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Abstract: The application of multimodal data in road maintenance has attracted considerable
attention due to its potential to enhance decision-making processes and improve infrastructure
resilience. This paper provides a comprehensive review of the utilisation of various modalities
of multimodal data, including LiDAR, RGB images, thermal images, ground-penetrating radar
(GPR), text, audio, and some others for road maintenance tasks. The research methodology
thoroughly examines existing literature, categorising data modalities and analysing their
respective applications. The paper discusses the integration and fusion of multimodal data,
spatial and temporal analysis techniques, decision support systems, strategies for resilience
and adaptability and information requirements in for road maintenance. It also explores
data structures for integration into digital twin, advanced methodologies for sensor fusion,
integration of new sensors and data types and multimodal sensors into road maintenance.
This comprehensive review underscores the significance of multimodal data in enhancing the
efficiency and effectiveness of road maintenance activities and identifies gaps in the automatic
fusion of different modalities in the context of road asset management.
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1. Introduction and background

1.1. Definitions

This paper presents a comprehensive review of the employment of multimodal data in the
context of road maintenance procedures. Multimodal data refers to data that is collected
from multiple modalities. These sources can include various sensors, devices, or systems that
capture different types of information. In the context of road maintenance, multimodal data
traditionally include data from sources such as:

• Traffic cameras: Capturing visual information about traffic flow, road conditions,
and incidents.

• GPS devices: Providing location data for vehicles and assets on the road network.
• Accelerometers and gyroscopes: Recording motion and orientation data for vehicles

and infrastructure.
• Weather stations: Gathering meteorological data such as temperature, precipitation, and
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wind speed.
• Road surface sensors: Measuring parameters such as pavement condition, friction,

and temperature.
• Vehicle sensors: Monitoring vehicle performance, fuel consumption, and emissions.
• LiDAR (Light Detection and Ranging): Utilising laser scanning technology to measure

distances and create detailed 3D representations of road surfaces and surroundings.
• Textual records (mainly from inspection and maintenance reports): including a

description of road assets, inspection specifications, identified issues, defects information,
maintenance priority, required maintenance activities, completed tasks, and so on.

The paper examines the merits and drawbacks of conventional modalities traditionally
employed in road maintenance practices. Additionally, it delves into modalities utilised in
other domains that have yet to be thoroughly investigated in the context of road maintenance.
Furthermore, an investigation into user requirements for traffic inspections is conducted to
ascertain the necessary data for making informed decisions regarding repair processes.

Road maintenance refers to the regular upkeep and repair of roads, and motorways and
other transportation infrastructure to ensure their safe and efficient operation. It includes a
range of activities aimed at preserving the condition and functionality of road networks, such
as repairing potholes, resurfacing pavements, cleaning drainage systems, replacing signage,
and maintaining roadside vegetation.

1.2. Problem statement

Roads are cost-effective to build and expand (£8 to £24 millions/mile) when compared to rail
(£50 to £400+ millons/mile)[1, 2] . Over time, this has led to an enormous 246,700 miles of
motorways and roads in the UK carrying over 83% (328 billion vehicle miles) of all passenger
miles travelled and 79% of all domestic freight [3]. Roads are responsible for 69% of all
transport Greenhouse Gas Emissions (GHG), the highest of all UK industries. Roads are
increasingly safer, but still responsible for 1,784 deaths and 25,511 serious injuries just in 2019.
Motorways and A roads are only 13% of the road network’s total length but carry 66% of the
total road traffic on a shoestring budget, receiving only 15% of the total public expenditure on
all transport modes. This lack of investment is a leading cause of steady annual traffic delay
increases, with the average delay estimated at 47.3 seconds/vehicle/mile in 2018. This means
that 4.3 billion labour hrs/year are wasted in traffic. These numbers highlight the importance
of efficient road network expansion, maintenance, and repair. Interventions that are carried
out before they are really needed or after they could have been easily corrected can waste
resources and unnecessarily increase GHG and accident rates. Unfortunately, this is too often
the case, with (i) 3% of all ‘A’ roads, 6% of ‘B’ and ‘C’ roads, and 16% of unclassified roads
categorised as needing substantial maintenance, (ii) repair/maintenance road closures alone
costing the UK £26.2 m/year, and (iii) the annual carriageway maintenance budget shortfall
per authority ballooning to £4.1 million in 2018/19[4]. Years of underfunding within both
revenue and capital budgets have led to insufficient cyclical maintenance of roads that, along
with the climate change impact and increased traffic volumes, particularly on the minor road
network, have accelerated further structural decline.

We contend that this cycle will persist as long as roads remain inadequately documented
and monitored, leading to reactive maintenance practices. However, with recent advancements
in multimodal data processing, there is no justification for perpetuating this trend. Future road
data acquisition processes have the potential to become more intelligent, delivering real-time
information and insights to maintenance teams and data analysts. This enhancement enables
better application of the capital invested in road maintenance.
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1.3. Research significance

The significance of this research lies in its potential to address persistent challenges in road
maintenance practices. By highlighting the impact of inadequate documentation and reactive
maintenance, the study underscores the urgent need for innovative solutions. Multimodal
data fusion plays a significant role in the realm of road asset management. Fusing multiple
modalities will result in a comprehensive understanding and assessment of road surface
conditions, as each modality senses the environment differently. The exploration of recent
advancements in multimodal data processing offers a promising avenue for improving road
infrastructure management. By harnessing real-time information and insights, stakeholders
can make more informed decisions, leading to optimised resource allocation and enhanced
road maintenance outcomes. Ultimately, this research has the potential to contribute to the
development of smarter and more efficient road maintenance practices, resulting in safer and
more sustainable transportation networks.

1.4. Research structure

This paper begins with an Introduction and Background section, which encompasses
definitions, problem statements, and research significance. Gaps in the literature subsection
focuses on summarising literature on multimodal data in the context of roads. Following
this, the Research Methodology section is presented. Subsequently, the main focus of the
research is delved into the multimodal data user requirements, classification, fusion, and
real-time integration for the road maintenance and operation section. The Discussion section
follows, where the findings and implications of the research are discussed in detail. Finally,
the Conclusion section provides a summary and concluding remarks for the research.

This research was conducted by a team of academic experts with diverse expertise in
mobile mapping hardware design, photogrammetry, computer graphics, digital twin integration,
data modelling, and machine learning. Our goal is to create a real-time, continuously updated
digital twin of the UK Road Network using multimodal data. As a first step, we plan to
investigate and align the multidisciplinary advancements in multimodal data fusion and its
integration with digital twin technology.

1.5. State of research

From the investigated research statistics, there are several notable gaps in the review of
multimodal data for road inspections:

Limited coverage of specific road asset types: While there is substantial research on
LiDAR-based mobile mapping for road maintenance assessments, the coverage of specific
road asset types varies. For instance, there is a significant focus on pavement conditions,
traffic signs, and vegetation, but other critical assets such as drainage systems, lampposts and
retro-reflectivity quality of road assets receive comparatively less attention[5–7]. Section 3.6.7
Data modalities and their applications for road assets maintenance investigates the capability
of each modality to provide the necessary level of information for specified road assets. Table
3 summarises the outcomes of the literature review of each modality and its applicability for
each road type asset investigation.

Sparse integration of GPR and thermal camera data: Although there are some instances
of integrating ground penetrating radar (GPR) and thermal camera data with LiDAR for
road maintenance inspections, the number of studies exploring this combination remains
relatively low. This indicates a gap in understanding the potential benefits and challenges
of integrating multiple modalities for comprehensive road inspections[8–10]. Sections 3.6.3
Thermal images and Section 3.6.4 GPR explore existing research of these modalities, their
benefits and challenges.
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Limited research on automation of data fusion with operational data: such as text
reports data and routine inspection data. Despite the importance of operational data for
road maintenance, there are relatively few studies focusing on it’s fusion with LiDAR and GPR
data. This gap suggests a need for more research in this area to enhance road maintenance
management and infrastructure planning [11–13].

Challenges in Multimodal Data Fusion: While there are numerous studies on multimodal
data fusion for road inspections, gaps exist in the comprehensive integration of different data
modalities. The limited coverage of specific fusion approaches highlights the need for more
diverse and robust fusion methodologies tailored to different road assets.

The review of the research statistics has shown insufficient attention in the literature
towards data fusion and multimodal data. In the rest of this paper, we delve into details
of the existing research while comparing the described outputs with inspection information
requirements and tailored inspection needs of each asset type. Sections 3.8. Advanced sensor
fusion and Section 3.9. More sensor data fusion of the paper particularly focus on innovations
in multimodal data sensing fusion methodologies.

1.6. Research aim and objectives

We aim to explore the state-of-the-art in multimodal data fusion and integration with digital
twins. This involves investigating the latest techniques and methodologies for combining
various types of data to create a cohesive and comprehensive digital representation of the road
network. By understanding the current advancements and challenges in this field, we can
identify the most effective approaches for data fusion, address potential integration issues, and
lay a strong foundation for developing a robust and reliable digital twin that can significantly
enhance road maintenance and operational efficiency. By collaborating on this paper with
a multidisciplinary research team, we aim to assemble the puzzle pieces to fully leverage
the strengths of each discipline. This multidisciplinary approach is crucial as it allows us to
integrate diverse perspectives and expertise, ensuring that our solutions are both innovative
and practical, ultimately leading to a more accurate and efficient pipeline where each step is
seamlessly interoperable with the others.

Objectives
• Objective 1 - To conduct a comprehensive review of the utilisation of various modalities

of multimodal data, including LiDAR, RGB images, thermal images, ground-penetrating
radar (GPR), text, and sound, for road maintenance.
Approach: This involves thoroughly examining existing literature, classifying data
modalities, analysing their respective applications, and identifying gaps in the
existing research.

• Objective 2 - To explore integration and fusion techniques of multimodal data, spatial
and temporal analysis methods, decision support systems, and strategies for resilience
and adaptability in the context of road maintenance.
Approach: This includes discussing data structures for integration into digital twins,
advanced sensor fusion methodologies, and future directions for incorporating additional
sensor data to enhance road maintenance and operation activities.

• Objective 3 - To understand the additional values that each modality can bring to DT in
the context of road maintenance.
Approach: This involves identifying the unique contributions of each data modality
(LiDAR, RGB images, thermal images, GPR, text, and sound) to the enhancement of
Digital Twins.
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1.7. State of practice

There are many industry tools for working with mobile mapping and multimodal data, which
can be grouped by the functionalities they perform.

Data Collection
Industry-leading companies producing equipment for traffic-speed mobile mapping

include Trimble (Trimble MX9 [14]), Leica Geosystems (Leica Pegasus [15]), Topcon
(OP-S3 [16]), REIGL (VMX-2HA [17]), and NavVis (NavVis VLX [18]). These systems
allow for road inspection at traffic speed without the need for road closures, offering high
precision and dense point clouds. These companies also provide additional software for
pre-processing the data. However, a drawback is that the hardware often designed on LiDAR
and RGB data requires additional equipment to collect other modalities like GPR and
thermal data.

The Traffic Speed Deflectometer (TSD) by Greenwood Engineering[19] provides
multimodal data collection for pavement, including deflectometer data, GPR, pavement
temperature, point clouds, and continuous RGB orthomosaic of the pavement.

A significant drawback of industry state-of-the-art tools for data collection is their high
cost and the need for planning and preparation prior to surveys, which limits the frequency of
usage. These tools are commonly used for pre-construction scanning, road repair schemes,
and yearly analytical surveys, unsuitable for daily/weekly operational maintenance activities.
Hence, there is a significant gap in the hardware market in identifying low-cost solutions that
would be affordable to use in daily and weekly surveys. In addition to this, the industry data
collection survey do not privide real-time integration of multimodal data. Commonly these
steps will be completed after additional data processing.

Geographic Information System Software.
Several Geographic Information System (GIS) software solutions are capable of working

with multimodal data, integrating various data types such as LiDAR, RGB, GPR, thermal
imaging and others. As some data modalities are best represented in 2D, GIS Engines are
powerful tools for combining 2D and 3D data. Many industry-leading vendors include GIS
functionality; however, in this category, Esri ArcGIS [20] and QGIS [21] represent a substantial
share of the market.

QGIS is an open-source software, which means it’s freely available to use and modify.
This makes it accessible to a wide range of users and encourages collaboration and innovation.
QGIS and ArcGIS support various data formats, including vector, raster, and 3D data.
They can handle different types of spatial data, making it suitable for integrating and
analysing multimodal datasets. QGIS has a plugin architecture that allows users to extend
its functionality. There are numerous plugins available for tasks such as data processing,
analysis, and visualization, enabling users to customize QGIS according to their specific needs.
QGIS and ArcGIS can leverage cloud computing services for processing large datasets or
performing computationally intensive geospatial analyses. Users can set up virtual machines
(EC2 instances) on AWS and install QGIS on them to run processing tasks in the cloud. The
drawback of both QGIS and ArcGIS is latency and rendering delays when working with large
point cloud datasets.

BIM Software
Integration of multimodal data continues its steady growth into BIM-related applications.

To name a few: Autodesk’s Infraworks [22], Civil3D [23], Navisworks [24], Recap [25],
Trimble’s TBC [26], RealWorks [27], Quadri [28], and Bentley’s Microstation [29],
OpenRoads [30]. The primary purpose of BIM applications is to support construction planning
and design, so the integration of point clouds is commonly required for landscape study,
quantity takeoff, and other critical design and planning tasks.

While Building Information Modelling (BIM) models are valuable tools for design,
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construction and facility management, using them for recording real-time state of roadscan
pose certain challenges. Firstly, many road construction models are created in CAD formats
containing road alignments and coordinates of point assets and lack comprehensive 3D
representation. Secondly, BIM models are typically designed for the pre-construction and
planning phases, updating them in real-time to reflect changes in the physical environment
might not be feasible due to model parsing and asset referencing issues. BIM Models, Ifc files
commonly have limited support for texture mapping and no parameters available to reflect
damage and changes with the road assets.

Road Assets Feature Extraction Tools
Feature extraction tools, including TopoDOT [31], Ordinance Survey [32], and

Orbit3DM [33], are integral in processing and analyzing data from mobile mapping and
other survey technologies. Specifically designed for extracting significant insights from point
cloud data, these software solutions enable various applications in infrastructure management,
construction, and geographic information systems (GIS).

TopoDOT is a leading software solution for extracting features from LiDAR point clouds
working as a plugin for Bentley Systems products like Microstation and OpenRoads. It is best
used when exported in a dedicated format from pre-processing software like TBC. TopoDOT
extracts road alignments, road markings lines, and road grid lines. It aligns RGB images
by references. Feature extraction tools considerably reduce workload compared to manual
processing and information extraction, however, the process is yet a long way away from
reaching full automation. The extracted results from these tools are presented in CAD formats,
which would require further processing to generate a textured 3D reconstruction model.

Classification and Segmentation.
TBC (Trimble Business Center) is a comprehensive software package designed for

surveyors and geospatial professionals. It provides tools for processing, analyzing, and
managing geospatial data, including point clouds. Seamlessly integrates with other Trimble
products, allowing for a smooth workflow. Trimble produces modalities of LiDAR and
RGB, besides GNSS and IMU for location and rotation. Laser profilers, projected and
perspective cameras capture data from road assets. Trimble Business Center handles different
processing including filtering, pre-processing, registration, classification and vectorisation[34].
Terrasolid [35] ecosystem provides users with Terra Scan, Terra Modeller, Terra Match, Terra
Photo. They support different formats, classification routines of point cloud data, filtering
and vectorisation. Meanwhile, rectification and orthomosaicing are a part of image-to-image
adjustments using ground control points in Terra Photo. TIN and mesh, coloured shaded
surfaces and triangle nets, contour lines, slope directions and textured surfaces are visual
functions for using these modalities [36].

Photogrammetry Generation
Photogrammetry involves the process of reconstructing 3D models from images. The

software analyses the overlapping images or scan data, identifying common features and
triangulating their positions in 3D space. This process results in a detailed 3D representation
of the photographed or scanned object or scene. Photogrammetry generation software
encompasses tools like Metashape (formerly Agisoft Photoscan), RealityCapture, 3D Survey,
and ContextCapture [37–40].

These photogrammetry generation software packages each offer unique strengths and
are tailored to different industry needs. Metashape and RealityCapture are known for their
high accuracy and speed, making them suitable for a wide range of applications. 3D Survey
provides a user-friendly approach specifically for surveyors, while ContextCapture excels in
infrastructure and urban planning with its detailed and scalable models. For mobile mapping
datasets Agisoft Metashape currently holds leading position. However, with the best results
so far the overlap and density of the mobile mapping data produce mesh with gaps and
low resolution, which makes it insufficient for traffic officers and data analytics to use for
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decision-making support.
Game Engines
Game engines like Unity [41] and Unreal Engine[42] have gained popularity for their

ability to handle complex datasets and create immersive virtual environments [43]. Integrating
multimodal data with game engines presents opportunities for various industries, including
simulation, training, urban planning, and entertainment. Unity offers versatile tools for
importing and processing multimodal data, including point clouds, GIS data, photogrammetry
models, and sensor data. Unity includes SEnsorSDK and SystemGraph which manages
graphical features such as rendering, lighting, meshing, texturing, and shading. 3DVEM solves
transformations, alignment, orientation and registration of 3D data including LiDAR and
image-derived point clouds [44] . Unreal Engine excels in handling large-scale environments
and high-fidelity graphics, making it suitable for processing and visualising multimodal data.
Its Blueprint visual scripting system enables rapid prototyping and iteration of data-driven
interactions and simulations. Geometry Scripting and Procedural Content Generation
Graph(PCG) integrate well with point clouds creating procedural(dynamic) textures. Unreal
Engine’s Datasmith plugin facilitates the import of CAD data, GIS data, point clouds, and
other formats with the preservation of metadata and hierarchy.

The review of the state of practice reveals several gaps and limitations in current
approaches to working with multimodal data:

• Limited integration with real-time operations: Many industry tools for data collection,
such as those for traffic-speed mobile mapping, are designed for pre-construction
scanning or yearly analytical surveys rather than operational maintenance activities.
This limits their ability to provide real-time updates for digital twins or support frequent
maintenance activities.

• Inadequate support for texture mapping and damage information: BIM models,
commonly used for design and construction planning, lack comprehensive 3D
representation for real-time road state recording. They often have limited support for
texture mapping and lack parameters to reflect damage and changes with road assets.

• Manual Processing requirements: Despite advancements in feature extraction tools like
TopoDOT, the process is still far from fully automated. While these tools considerably
reduce workload compared to manual processing, further processing is often required to
generate textured 3D reconstruction models.

• Insufficient resolution and gaps in meshes: Photogrammetry generation software
packages produce mesh with gaps and low resolution when processing mobile mapping
data. This makes the data insufficient for decision-making support by traffic officers and
data analysts.

• Overall, there is a need for further research and development to address these gaps
and limitations in current practices for working with multimodal data. This includes
improving real-time integration capabilities, automating processing workflows, enhancing
support for texture mapping and damage reflection, and increasing the resolution and
accuracy of photogrammetry-generated meshes. Additionally, dynamic integration
capabilities in game engines need to be expanded to better support real-time operations
and decision-making processes.

1.8. Gaps in the literature

The field of multimodal data fusion for road maintenance and operation is rapidly evolving,
driven by continuous advancements in data collection hardware and analytical techniques.
Consequently, one significant gap in the existing literature is the need for regular reviews to
keep pace with these innovations. Many previous publications may not reflect the current
state-of-the-art due to the frequent introduction of new sensors, improved data processing
algorithms, and enhanced integration methodologies. This highlights the importance of
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periodically reassessing and updating the body of knowledge in this domain.
A critical limitation of existing research is the tendency to focus on specific assets

or individual data modalities. For instance, numerous studies concentrate exclusively on
pavement condition assessment using a single type of data, such as LiDAR or thermal imaging,
without considering the synergistic benefits of integrating multiple data sources. This narrow
focus limits the comprehensiveness of the solutions proposed and their applicability to the
broader spectrum of road maintenance and operational needs.

Furthermore, many papers lack a holistic review and integration with Digital Twin (DT)
technologies. While DTs offer a promising framework for real-time, dynamic representation
of physical assets, their potential remains underexplored in the context of road infrastructure
management. There is a noticeable deficiency in the literature that addresses the integration of
multimodal data with DTs, which is essential for creating a cohesive and actionable digital
representation of the road network.

In summary, the following gaps have been identified in the current literature:
1. Need for regular reviews: Due to rapid advancements in data collection hardware, existing

literature may become outdated quickly, necessitating frequent reassessment.
2. Limited scope on specific assets or modalities: Many studies focus narrowly on specific

road assets or single data modalities, missing the opportunity to leverage the full potential
of multimodal data fusion.

3. Lack of integration with DTs: There is a paucity of research on the integration of
multimodal data with Digital Twin technologies, which is crucial for a comprehensive
approach to road maintenance and operation.

Addressing these gaps is essential for advancing the field and harnessing the full potential of
multimodal data fusion and Digital Twins in enhancing the efficiency and effectiveness of road
maintenance and operation.

2. Research methodology

The methodology used for this paper is shown in Figure 1. The authors used a qualitative
approach for this review. This included expert interviews, a review of available literature, and
other relevant documentation.

Figure 1. Research methodology.
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The expert interviews were conducted systematically with industry experts with technical
knowledge about multimodal data and its applications. A set of questions were asked in
an unstructured way, so that all the aspects related to information requirements, decision
support systems, classification of modalities, application of modalities, data structure for DT
integration and Data fusion methods were covered. The information collected through these
interviews was then analysed and utilised for this review.

The literature review identified the relevant literature from two comprehensive databases,
Scopus and Web of Science. The Keywords search used were "Multimodal Data + Roads" and
"Multimodal Data + Maintenance + Roads". A limited set of identified literature was analysed
and used for this review.

Other documentation consisted of reviewing road datasets with multiple data modalities.
Technical documents available online and in GitHub repositories were also utilised and
reviewed to identify the data fusion methods.

3. State of the art for multi-modal data

The advent of multimodal data in road maintenance represents a significant leap in enhancing
the efficiency, resilience, and adaptability of road infrastructure systems. Leveraging diverse
data sources such as sensor networks, remote sensing technologies, and advanced imaging
techniques, the integration and fusion of multimodal data provide comprehensive insights
into road conditions, traffic patterns, and environmental factors. This section delves into
the state-of-the-art methodologies for utilising multimodal data, emphasising the importance
of information requirements, integration techniques, spatial and temporal analysis, decision
support systems, and the role of resilience and adaptability in road maintenance. By harnessing
these advanced data-driven approaches, road authorities can optimise asset management,
predictive maintenance, and overall operational strategies, ensuring sustainable and robust
road networks.

3.1. Information requirements

Establishing information requirements for designing digital twins of various road assets
necessitates a comprehensive understanding of the specific data needed to accurately represent
and simulate these assets. This involves identifying key attributes and parameters such as
geometric dimensions, material properties, and real-time operational data [45]. For different
road assets, such as pavements, bridges, and signage, unique sets of information must be
gathered, including structural health, traffic loads, environmental conditions, and maintenance
history. Furthermore, integrating IoT sensors and leveraging data from existing infrastructure
management systems can enhance the fidelity and functionality of the digital twins [46].
Ensuring data interoperability, accuracy, and consistency is crucial, as is the need for a
scalable data architecture to accommodate future enhancements and expansions of the digital
twin models [47]. This foundational information framework supports more efficient asset
management, predictive maintenance, and informed decision-making in road infrastructure
projects. The theoretical aspects underlying the information requirements for leveraging
multimodal data in road maintenance are discussed in the following subsections.

3.2. Integration and fusion of multimodal data

Effective utilisation of multimodal data in road maintenance necessitates clearly understanding
the requirements, which encompass various aspects that ensure road networks’ smooth
functioning and upkeep. The integration combines data from various sources to create a
unified view of road conditions and operational parameters [48]. At the same time, fusion
techniques aim to extract meaningful insights by merging complementary information from
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different modalities [49]. Using machine learning methods and ontological frameworks play
crucial roles in leveraging multimodal data into road maintenance decision-making.

3.3. Spatial and temporal analysis

Multimodal data in road maintenance exhibit spatial characteristics that influence the
dynamics of road networks and operational processes. Spatial analysis involves examining the
geographic location and condition of road assets, traffic patterns, and environmental factors to
identify spatially-dependent trends and patterns. Temporal analysis of this data focuses on
understanding how road conditions, traffic flow, and operational parameters vary over time,
enabling predictive modelling and trend analysis. Techniques such as spatial data analytics,
time-series analysis, and geospatial visualisation tools empower road authorities to extract
valuable insights from multimodal data and make informed decisions regarding maintenance
scheduling, traffic management strategies, and infrastructure investments.

3.4. Decisions support systems

Decision support systems (DSS) are pivotal in leveraging multimodal data for road maintenance
by providing analytical tools and decision-making frameworks to support planning, monitoring,
and control activities. DSS integrates multimodal data sources with computational models,
optimisation algorithms, and visualisation techniques to facilitate data-driven decision-making
at various levels of the road management hierarchy. From strategic planning and asset
management to tactical routing and incident response, DSS empower road authorities to assess
alternative scenarios, evaluate trade-offs, and optimise resource allocation based on real-time
and predictive insights derived from multimodal data.

3.5. Resilience and adaptability

The resilience and adaptability of road maintenance systems depend on their ability to
anticipate and respond effectively to disruptions, uncertainties, and changing conditions.
Multimodal data is a foundational resource for enhancing system resilience by enabling
proactive risk management, contingency planning, and adaptive decision-making in response to
unforeseen events such as natural disasters, accidents, or infrastructure failures. By harnessing
multimodal data streams, road authorities can enhance the robustness and agility of their
operational processes, thereby minimising disruptions, mitigating risks, and maintaining the
functionality and safety of road networks under diverse operating conditions.

Table 1 breaks down these and provides a detailed overview of each information
requirement, highlighting its significance and relevance in leveraging multimodal data for
road maintenance.

Table 1. A detailed overview of each information requirement in the context of leveraging
multimodal data for road maintenance.

Aspect Information Requirement Description

Integration
and Fusion of
Multimodal
Data

Data from sensor networks Sensor networks provide real-time data on various
aspects such as traffic flow, road surface conditions, and
weather parameters, facilitating continuous monitoring
and assessment of road conditions.

Remote sensing data Remote sensing technologies, such as camera imagery,
satellite imagery, RADAR and LiDAR offer a
comprehensive view of road networks and surrounding
areas, enabling the assessment of road infrastructure, and
environmental factors without any destructive effect or
contacting surfaces of road infrastructures.
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Table 1. Cont.
Aspect Information Requirement Description

Traffic monitoring data Traffic monitoring systems, including loop detectors,
RFID readers, and GPS tracking systems, capture
real-time data on traffic flow, congestion levels, and
vehicle movements, enabling traffic management and
optimisation of transportation systems.

Spatial and
Temporal
Analysis

Geographic distribution of road
assets

Understanding the spatial distribution of road assets
such as bridges, tunnels, and signage systems facilitates
spatial analysis for identifying spatially-dependent
trends, optimising asset management strategies, and
prioritising maintenance activities based on geographical
considerations.

Traffic patterns Analyzing traffic patterns, including origin-destination
flows, peak hours, and route preferences, enables road
authorities to optimize traffic management strategies,
identify congestion hotspots, and improve the overall
efficiency of transportation networks.

Environmental factors Incorporating environmental factors such as weather
conditions, air quality, and terrain characteristics into
spatial analysis enables road authorities to assess the
impact of environmental factors on road conditions,
traffic flow, and infrastructure resilience, informing
decision-making and risk management efforts.

Temporal variations in road
conditions and traffic flow

Monitoring temporal variations in road conditions,
traffic flow, and congestion levels over different time
intervals (e.g., daily, seasonal) facilitates trend analysis,
predictive modelling, and the identification of recurring
patterns, enabling proactive planning and adaptive
decision-making in response to changing conditions.

Decision
Support
Systems

Geographic distribution of road
assets

Integrating computational models such as traffic
flow simulations, pavement deterioration models, and
optimisation algorithms into decision support systems
enables predictive modelling, scenario analysis, and
optimisation of road maintenance activities.

Optimisation algorithms Employing optimisation algorithms such as genetic
algorithms, particle swarm optimisation, and linear
programming techniques facilitates resource allocation,
route optimisation, and scheduling of maintenance
activities, enhancing operational efficiency and
cost-effectiveness.

Visualisation techniques Utilising visualisation techniques such as geographic
information systems (GIS), dashboards, and interactive
maps enables the representation of complex data sets
and analytical results in a visually intuitive manner,
facilitating data exploration, decision-making, and
communication with stakeholders.

Real-time and predictive insights
from multimodal data

Leveraging real-time and predictive insights derived
from multimodal data sources enables decision-makers
to monitor ongoing events, anticipate future trends, and
proactively respond to emerging issues, enhancing the
responsiveness and effectiveness of road maintenance
activities.

Resilience and
Adaptability

Proactive risk management Implementing proactive risk management strategies,
such as hazard identification, vulnerability assessment,
and risk mitigation planning, enables road authorities to
anticipate potential threats and vulnerabilities, reducing
the likelihood and impact of adverse events on road
networks.
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Table 1. Cont.
Aspect Information Requirement Description

Contingency planning Developing contingency plans and response protocols for
various scenarios, including natural disasters, accidents,
and infrastructure failures, facilitates rapid response
and recovery efforts, ensuring minimal disruption and
maintaining the functionality of road networks under
adverse conditions.

Adaptive decision-making Embracing adaptive decision-making processes that
enable flexibility, agility, and responsiveness to
changing conditions empowers road authorities to
adjust strategies, allocate resources, and implement
interventions dynamically, enhancing the resilience and
adaptability of road maintenance systems.

Table 2 provides a comprehensive overview of different modalities, data types and formats
and their applications in road maintenance.

Table 2. Technologies and capabilities in multimodal data for road maintenance.

Technology Data type and formats Capabilities

LiDAR 3D point clouds (LAS/LAZ, PLY,
XYZ, OBJ, ASC/CSV, and BIN) • Mapping road surfaces and infrastructure features

• Detection of terrain topography

Camera gray images (PEG, PNG, GIF, TIFF,
BMP, and SVG) - videos (MP4, AVI,

MOV, WMV, and MKV) - color
images (JPEG, PNG, and TIFF)

• Visual inspection of road conditions

• Traffic monitoring

• Incident detection

• Lane marking detection

• Anomaly detection

• Pavement condition assessment

Thermal Imaging Infrared radiation (JPEG, PNG, or
TIFF, FLIR’s radiometric JPEG

format (.RJPEG))
• Detection of temperature variations

• Identification of thermal anomalies

• Detection of defects in pavements and
infrastructure

GPR (Ground
Penetrating Radar)

Electromagnetic pulses (SEG-Y,
GPRMAX, DT1, DZT, and RADAN) • Non-destructive testing of subsurface layers

• Detection of buried utilities and voids

• Assessment of pavement structure and thickness

IMU (Inertial
Measurement Unit)

Linear and angular motion sensors
(CSV, JSON, or proprietary binary

formats)
• Real-time data on vehicle dynamics

• Integration with GPS for precise vehicle
localisation

• Motion tracking

GPS Satellite signals (GPX (GPS
Exchange Format)), NMEA

(National Marine Electronics
Association) 0183, KML (Keyhole

Markup Language))

• Precise geographic positioning

• Vehicle tracking

• Route optimisation

12
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Table 2. Cont.
Technology Data type and formats Capabilities

Radar Radio waves (HDF5, NetCDF, CSV)
• Object detection and tracking

• Measurement of distance, speed, and direction

• Supplemental data for traffic monitoring and
collision avoidance

Weather Sensors Meteorological parameters
• Real-time data on weather conditions

• Proactive response to weather-related hazards

• Integration with road condition monitoring
systems

Wireless
Communication Systems

Data exchange between vehicles and
infrastructure • Vehicle-to-vehicle (V2V) communication

• Vehicle-to-infrastructure (V2I) communication

• Real-time traffic information

• Cooperative collision avoidance

• ITS applications

Roadway Sensors Embedded pavement sensors
• Vehicle presence detection

• Traffic counting

• Speed measurement

• Traffic flow monitoring

Environmental Sensors Environmental parameters
• Monitoring of air quality, noise levels, and

pollutant concentrations (Air Quality, Noise, etc.)

• Assessment of environmental impacts

• Identification of pollution hotspots

3.6. Classification and applications of data modalities

The digitisation process of physical assets is complex. Modern data collection technologies,
such as laser scanners and cameras, have greatly enhanced the efficiency of capturing geometric
information that reflects the as-is state of facilities in terms of Digital Twins [50]. GPS and IMU
observations as positional modalities play important roles in the fusion of other modalities [51].
Integration of GPS and IMU measures the transition and rotation of sensors. Furthermore
misalignment and boresight are of important parameters which these positional sensors can
solve for relational transformation between modalities [52]. Other modalities are categorized
and investigated as following:

3.6.1 LiDAR

The practical benefits of LiDAR technology in infrastructure management are undeniable. Its
effectiveness in detecting urban objects and facilitating road asset inventory is a testament
to its versatility [53]. By augmenting LiDAR with other sensors like cameras, GPR, and
IMU, mapping capabilities can be enhanced, leading to more precise road defect detection and
improved traffic safety measures [54]. LiDAR-equipped UAVs have emerged as invaluable
assets in surface defect detection and maintenance initiatives, offering a holistic approach to
upkeep infrastructure[55]. Using adjacency analysis in virtual twining of man-made objects is
one of the state-of the -art usages of LiDAR [56].
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Collaborating LiDAR with GNSS technology has paved the way for developing accurate 
pothole detection systems and revolutionizing road maintenance practices [57]. While LiDAR 
excels in providing accurate scans of road infrastructure, incorporating cameras is often 
deemed necessary to capture crucial road surface textures, thereby augmenting the efficacy 
of road inspection processes. In addition, LiDAR point clouds are also used in vegetation 
segmentation and classification on roads. By analysing point clouds to identify point-based 
and neighbourhood-based features, removing planar surfaces, and applying a random forest 
classifier followed by a rectangularity-based region growing algorithm, vegetation points can 
be effectively segmented and classified into linear objects [58].

However, spread of laser pulses allows penetration through vegetation and sensing surface 
data beneath the canopy. Moreover, highly accurate and Large areas can be scanned in a 
short time compared with terrestrial methods. However, It needs much larger investment 
into equipment. So although economical when used on large scales, it can be expensive for 
capturing data in smaller areas. Meanwhile typically LiDAR data is not colourised making it 
difficult to interpret without overlaying RGB photos.

3.6.2 RGB images

In contrast to laser scanning, which allows the capture the environment in 3D, imaging usually 
produces a 2D visual representation, i.e., images. An image sensor receives light that is 
focused by an optical lens and transfers information to a digital signal. There are advantages 
of using image sensors to capture the environment compared with using laser sensors. The first 
one is that the capturing device is usually less expensive. A huge amount of different camera 
options can be selected, and even modern cell phones nowadays also have good camera lenses. 
The second advantage is that it requires much less professional training to use cameras than to 
use a laser scanner, which makes it possible for all stakeholders of the facility to capture the 
current status of the asset. However, 2D images contain only 2D information, which requires 
image processing technologies to map 2D virtual information to 3D spatial space [59, 60].

For road maintenance, particularly in identifying defects, RGB images can efficiently 
identify various road surface defects, such as cracks and potholes, which can deteriorate road 
quality and compromise safety. Advanced image processing and deep learning techniques 
are integral to these systems, enhancing detection accuracy and reducing high costs and 
inefficiencies associated with manual inspections [54]. In [61], defects on asphalt pavement 
are detected by convolutional neural networks, utilising image data collected by a mobile 
mapping system. [62] presents a dataset that is composed of 45,788 images captured with a 
high-resolution industrial camera for pavement distress detection and classification. In [63], 
the authors propose an approach to detect pavement distress in images collected by a drone 
with a high-resolution camera.

RGB-D cameras, also called depth cameras, work by capturing both RGB images as well 
as a depth map of the scene, which is achieved by the use of structured light or time-of-flight 
techniques. While structured light projects a known pattern of light onto the scene and analyses 
the deformation of the pattern to compute depth, time-of-flight emits a  pulse of l ight and 
measures the time it takes for the pulse to return. RGB-D cameras are used in a variety of 
applications, including computer vision, robotics, and augmented reality. They provide a 
more comprehensive understanding of the environment than traditional RGB cameras alone, 
allowing for more accurate perception and interaction with the world. Various road defects 
including patching, cracks, and potholes are detected in data collected by RGBD sensors and 
unsupervised approach [64].

RGB images are a reliable source for detecting road furniture particularly traffic signs. 
Many types of defects related to traffic signs could be detected only in the RGB modality. This 
includes graffiti, dirt, vegetation coverage, faded damaged text and directions. Both RGB and 
point cloud can be used to detect traffic sign tilt, deformation and missing elements. There are
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several experiments have been conducted in the literature to localise and 3D reconstruct traffic
signs [65–67], however the majority of the scholarly literature focuses on sign detection and
recognition for autonomous driving needs [68–70].

Debris and Illegal objects on the road and its sides could also be detected only using
RGB modality as it provides necessary context for road maintenance staff and AI detection
algorithms. Automation of road safekeeping by clearing debris and illegal object detection has
been explored in the literature [71].

3.6.3 Thermal images

Thermal imaging, or infrared thermography (IRT), utilises infrared cameras to capture the
heat distribution of objects or areas. This technique operates on the principle that all objects
above absolute zero emit radiation, detectable by IRT cameras in the infrared spectrum,
similar to how standard cameras capture visible light. As an object’s temperature increases,
so does the radiation it emits, allowing thermal images to display temperature variations in
different colours.

IRT has proven highly effective for detecting non-visible damage on roads by identifying
variations in heat signatures indicative of subsurface anomalies such as voids, moisture
accumulation, and delamination within pavement layers. Recent studies have advanced this
application; for instance, automated methods for detecting sub-pavement voids using IRT have
been proposed [72–74]. [73] demonstrated that enhancements such as Principal Component
Thermography(PCT). Sparse PCT could significantly improve IRT’s detection capabilities.
Further, PCT analysis has been utilised to increase the accuracy of damage detection [74].
However, IRT’s effectiveness can be compromised by environmental factors such as water
presence, shadows, or direct sunlight, necessitating a standardised operating protocol to
optimise performance. Additionally, [75] developed a numerical model to predict thermal
contrasts in concrete roads, which could forecast subsurface delamination under various
environmental conditions. This model was validated with experimental results from an actual
concrete block, showcasing its utility as a predictive tool for thermal contrast assessment.

IRT has also been used for road surface damage detection and quality assessment. In [76]
and [77], the authors applied IRT to detect pavement defects including chipped slab corners,
reflective cracks, local deterioration with scaling, longitudinal cracks, crack networks, grout
joining paving blocks, and joint deformations. In [78], IRT is used to detect voids above
damaged culverts and drainage pipes and quantify the dimension and severity of the defects.
In [79], delamination in RC bridge decks is detected by IRT for rapid bridge inspection. In
summary, IRT is a non-intrusive method that does not require surface contact or alteration,
preserving the integrity of the structure being inspected. However, external factors such as
sunlight, wind, and temperature can influence the thermal readings and affect the accuracy
of results.

Infrared radiation cannot go through water or glass. Meanwhile thermal cameras cannot
identify individuals because infrared radiation does not create detailed enough images.
However, because they generate very-high-contrast images, thermal cameras are just as
effective at night as they are during the day and deliver high performance in all weather and
air conditions.

3.6.4 GPR

Ground Penetrating Radar (GPR) is a modality of sensing data which can investigate the
shallow subsurface of the ground, roads, railways and bridges. It uses the electromagnetic
waves for subsurface measurements. The electromagnetic wave is radiated and travels through
the subsurface material until it hits an object or surface that has different electrical and magnetic
characteristics; it scatters back the wave, so it will be detected by the receiver antenna [8, 80].
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The sensitivity of the frequency spectrum of GPR to the typology of materials was investigated 
in [81] for bituminous mixes, granular and cement-treated materials. It addresses the usage of 
GPR in monitoring asphalt pavement and determining the structural condition of the pavement. 
A GPR equipment proper for surveying is horn antennas, which can operate at traffic speed, 
with frequencies ranging from 1 to 2.5 GHz, for penetration depths of approximately 0.4 m to 
1 m, respectively. Another type of antenna is dipole antenna which was developed for use in 
geological survey, and can be implemented for use in contact with the surface, with the best 
range of frequencies from 400 MHz to 2.5 GHz. Array Multichannel antennas include a large 
number of antennas recording simultaneously to enable faster data collection. Usually, GPR 
antennas are mounted on a vehicle, alongside a GNSS receiver and a distance measurement 
indicator for geo-tagging and measuring travelled distance [9].

A trace or A-scan is recorded by a single antenna. It is in the time domain and after 
conversion is referenced in distance or depth. B-scan is a 2D slice which can be visualized by 
radargram. It contains multiple A-scans in a row. C-scan is created as 3D data by stacking 
several B-scans and a depth slice of this data. Using an array antenna, the 3d data can be 
directly generated [82].

The relationship between the velocity of the wave and material properties is the basis for 
using GPR to investigate the subsurfaces because the velocity is different between materials 
with different electrical properties, and a signal passed through two different materials will 
have two different travel time [83].

On the other hand, the deterioration and distress under the surface cannot be examined 
accurately using traditional methods such as hammer sounding, chain dragging, and test pits. 
According to [84] GPR was employed as a non-destructive method for routine subsurface 
inspections, especially in transport infrastructures. This technique can be applied on-site to 
assess flexible pavements, detect anomalies that could indicate damage in the airport runways, 
assess the track conditions of railways, inspect vertical structures of retaining walls, detect 
unknown geometries in the interior of bridges, detect moisture damage and delamination 
in asphalt pavement [85], and to measure thickness and detect damages of lining layers 
of tunnels.

GPR is a viable method to detect and determine drainage pipes because they rarely 
contain metal. However clay-rich soils attenuate GPR signals, since drains are generally linear 
segments, it leads to a detectable pattern. In a study by the Ohio State University plastic pipes 
were detectable on single profiles as distinct hyperbolic responses[86].

The advantages of this modality lie in its ability to offer non-invasiveness, and versatility 
across different materials. However, it comes with limitations due to depth restrictions and 
challenges in interpreting complex subsurface conditions.

3.6.5 Text

National inventory databases typically contain textual records, including inspection and 
maintenance reports, which are invaluable for evaluating the progression of every road asset 
condition and determining necessary maintenance measures. These reports, compiled during 
each assessment, are strictly connected to the operator’s knowledge. Therefore, reports 
inherently entail subjectivity, potentially leading to human errors and inconsistencies.

Information included within textual reports from road inspections and maintenance 
activities is rich and multifaceted, encompassing data such as road type, inspection 
specifications, identified issues, severity of defects, and their respective locations, maintenance 
priority, required maintenance activities, and so on. Furthermore, the reports may not be 
restricted to a single asset only (e.g., pavement), but can include information concerning 
any element forming the road infrastructure (e.g., barriers, signs, and so on). The details are 
articulated in natural language by often using more than one concept term to refer to the 
same object and usually describe multiple instances of the same type of deficiency. Currently,
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these textual resources are used indirectly to support condition assessment and predictive
maintenance, but are not used in a quantitative capacity. Consequently, there exists a demand
for automated techniques in text information extraction and data fusion to both transform
unorganised report data into structured datasets and fuse them with other data modalities (e.g.,
visual data) for advanced quantitative analysis.

Text data fusion with other data modalities has been extensively studied in computer
science and machine learning fields [49, 87–90]. Previous research has primarily examined
textual and visual data fusion in various domains such as image captioning [91], question
answering [92], image retrieval[93], clinical prediction models[94], and image annotation [95].
However, its application to infrastructure asset condition assessment and predictive
maintenance remains challenging due to the complexity and disorder of report data [96].

In the infrastructure domain, extensive research has delved into Information Extraction
(IE), the process of distilling crucial details from unstructured textual data like inspection
reports [97]. Automated information extraction methods have been devised to aid bridge
condition assessments [98–101]. Techniques such as semi-supervised conditional random
fields (CFR) [97], deep learning frameworks [96, 99], and hybrid data fusion have been
explored [98, 101, 102]. These methods aim to extract localised condition information,
synthesise inspection narratives, normalised named entities and concepts, correlate information
to overall condition ratings, and integrate visual and text data. Besides, the work proposed by
Momtaz et al. [96] takes a step forward in terms of multimodal data fusion in the infrastructure
domain, proposing a framework for predicting condition ratings of bridge components by
fusing textual and visual data. Their framework aims to reduce the uncertainty associated with
manual condition assessments, thus minimising human involvement.

Despite these advancements, multimodal data fusion including text sources in the road
infrastructure domain remains an unexplored area in research. The advantages from digitally
structuring textual records from any road infrastructure inspection and maintenance activities
primarily include overcoming the subjectivity, interpretability, and fragmentation of the
information contained in them, as well as improving the accuracy of condition ratings in the
case of pavements or other structural assets. Structuring textual information from disorganized
reports also generates a side benefit, though no less important, concerning the opportunity
to merge textual information with other data modalities. Such developments, as the one
proposed by [96], benefit from access to different modalities as complementary sources of
information that capture the reality of facts and eventual problems from different perspectives,
and therefore to provide a more robust and consistent documentation of the physical asset.
This opens the way for automated quantitative analyses of road assets conditions, including
predictive capabilities.

3.6.6 Audio

The use of audio data for pavements evaluation is an emerging field that utilises the sound
generated by the interaction between tires and road surfaces. This approach has the potential
to complement existing road monitoring systems by providing real-time insights into road
conditions. Several studies have demonstrated the potential of using audio data for road
surface analysis. Evaluating the road surface comprises of determining its condition (e.g., dry,
wet, and moist) and characteristics (e.g., texture, roughness, and cracking, thickness, layer
conditions) [103].

In general, most of the research focused on using audio signals from microphone sensors
embedded in the tires [103–108]. Ganji et al. [103] designed a custom equipment setup
for collecting tire-road interaction noise, focusing on the macrotexture characteristics of the
pavement. This method distinguishes surfaces with closely related macrotexture properties
by processing the collected audio signals. Their approach highlights the effectiveness of
using audio data to evaluate various pavement characteristics, such as texture and roughness.
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Gagliardi et al. [107] have developed an embedded system designed for real-time road surface
classification. This system uses acoustic data recorded inside the tire cavity, ensuring insulation
from external noise. The collected audio data are processed into Mel spectrograms, which are
then classified using a convolutional neural network (CNN) to determine the road’s condition.
The CNN is capable of distinguishing between good quality roads, damaged roads, silence,
and unknown conditions with an accuracy of 90-93% depending on the model’s quantisation.
This system represents a significant advancement by providing a low-cost, low-power solution
that can be deployed widely for continuous road health monitoring. Abdic et al. [108] have
introduced a deep learning approach utilising recurrent neural networks (RNNs) to detect wet
road surfaces from the audio of tire-surface interactions. Their system achieves an unweighted
average recall (UAR) of 93.2%, effectively identifying wet conditions across various vehicle
speeds, including when vehicles are stationary. This capability is crucial for enhancing safety
by providing timely alerts about hazardous road conditions. On the other hand, few researches
address the integration between audio data and other modalities, such as accelerometers to
improve the road condition assessment [109–111] and GPS to provide a map visualization of
the extracted conditions [111–113].

The use of audio data in road maintenance offers several benefits. The implementation of
audio-based monitoring systems can be more cost-effective compared to traditional methods
that require extensive hardware and manual inspections. The hardware required, such as
microphones and embedded systems, is relatively inexpensive and easy to install. Audio data
allows for real-time monitoring of road conditions processing and classifying road conditions
on the fly, providing immediate feedback that is critical for timely maintenance actions. Unlike
visual inspection systems that can be affected by lighting conditions and weather, audio-based
systems can operate effectively in various environments. The placement of microphones
inside the tyre cavity, as demonstrated in Gagliardi et al. [107], provides insulation from
external noise, ensuring reliable data collection. Furthermore, combining audio data with other
modalities, such as visual data, GPS and vibration sensors, could enhance the accuracy and
reliability of road condition assessments. Multimodal approaches could leverage the strengths
of each data type, providing a more comprehensive understanding of road health.

In this direction, Saeed et al. [114] proposed audio-image data fusion for classifying the
loose gravel condition. In this work, they extracted spectrogram and roboflow from these
modalities and a vgg-16 based segmentation method was applied for feature detection and
afterwards feature-level fusion. The aim is to aid in adapting gravel road maintenance to
reduce the environmental impact and enhance safety.

3.6.7 Data modalities and their applications for road assets maintenance

This section provides a summary of the different data modalities used in road maintenance
applications reviewed in the previous sections. For this purpose, Table 3 is provided. Based on
each data source analysed in the previous sections (i.e., LiDAR, RGB images, Thermal images,
GPR, Text, and Audio), the different types of applications found in the literature that aim to
support the maintenance of equally different types of road components (including pavements
and other road assets such as markings, furniture, traffic signs, and so on) are categorised.
In addition, the main references reviewed for each type of application are given. From the
table, although the literature’s inclination toward defect and damage detection applications on
road pavement emerges strongly, the quantity and heterogeneity of potential applications of
different data modalities on road infrastructure maintenance is nevertheless evident.
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Table 3. Summary of the various data sources and their applications for different
highway components.

Data Modality Road Asset Type Applications Papers

LiDAR

Pavement Defect and damage detection
on pavement and assessing

pavement distress

[54, 55, 57, 115]

Road marking Road marking defect detection [116]

Road furniture Road asset inventory [53]

Vegetation Road vegetation segmentation
and classification

[58]

RGB images

Pavement Defect and damage detection
on pavement

[61 –64]

Traffic signs Defects e.g. graffiti [65–70]

Traffic signs Removal of illegal objects e.g.
illegal signs

[117, 118]

Pavement Automation of debris cleaning
via robotics

[71]

Thermal images
Pavement Detecting non-visible damages

within pavement layers
[72–77]

Culverts, drainage Defects above damaged
culverts and drainage pipes

Bridge deck Bridge inspection (delimitation
in RC bridge decks)

GPR

Pavement Subsurface inspections:
deterioration and distress under

the surface

[78]

[79]

[8, 9, 77, 83 –85]

Pavement Infrastructure mapping [82, 84]

Retaining walls Subsurface inspections [84]

Vertical structure of bridges Subsurface inspections [84]

Lining layers of tunnels Subsurface inspections [84]

Drainage Asset detection [86]

Text
Bridges Report’s information extraction

for asset condition assessment
[96–101]

Bridges Report’s information extraction
for deterioration prediction

[102]

Audio
Pavement Evaluating road surface

condition (e.g., dry, wet, and
moist) and characteristics (e.g.,

texture and roughness)

[103]

Loose gravel road pavement Evaluating road surface
condition and maintenance

[114]

3.7. Data structures for digital twin integration

The integration of advanced computational tools in civil engineering has revolutionised
infrastructure management. Building Information Modeling (BIM) and Digital Twin
technologies play a pivotal role in this transformation [119, 120]. BIM aids in managing
buildings and infrastructure throughout their lifespan by creating digital representations [121].
Digital Twin technology takes BIM a step further by producing real-time virtual replicas
of physical assets, which are updated with real-time data, enabling continuous monitoring
and predictive maintenance [122, 123]. Digital twins are capable of managing large-scale
infrastructure, such as traffic for roads, by processing data from sensors to make immediate
assessments and predictions for maintenance [124]. The successful demonstration of digital
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twin technology in road maintenance has been highlighted in several case studies, outlining its
practical benefits and implementation strategies, as summarized in Table 4. It is evident that
digital twin technology accompanies a wave of change that arises from the road maintenance
and management fields that have been discussed in these case studies. The technical solutions
involved the amalgamation of several traffic modes as well as the use of the forecasts from
analytics on the basis of the available data sources. Due to these methods, the reliability of
the machine in the act of route maintenance is significantly improved and the autonomy the
machine is given in the decision-making process can be safely ensured. In this section, we
explore the fundamental data structures and their roles in integrating digital twins, focusing
on the types of data, data models, and data management strategies required for the effective
deployment of digital twins in road maintenance.

Table 4. Case studies of applying Digital Twin technology for road maintenance.

Case Study Location Overview Implementation Benefits

Singapore’s
Intelligent

Transport System
[125]

Singapore Advanced ITS
incorporating
digital twin

technology for
road infrastructure

management.

• Multimodal
Data Integration:
Traffic cameras,
sensors, weather
data, GPS data.

• Predictive
Maintenance:
Real-time data
and historical
trends.

• Simulation and
Scenario Testing:
Impact of heavy
rainfall, etc.

• Improved
maintenance
efficiency.

• Reduced traffic
disruptions.

• Cost savings
from preventive
maintenance.

UK’s National
Roads

Telecommunications
Services (NRTS)

[126]

UK Digital twins for
managing road

network
maintenance.

• Sensor Networks:
Real-time data on
road conditions,
traffic flow, and
environmental
factors.

• Data Analytics:
Identify patterns
and predict
maintenance
needs.

• Visualisation
Tools: Visual
representation of
road network.

• Enhanced
decision-making.

• Increased safety and
reduced accidents.

• Optimized resource
allocation.
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Table 4. Cont.
Case Study Location Overview Implementation Benefits

California
Department of
Transportation

(Caltrans) [127]

California, USA Enhanced
highway

maintenance with
digital twin
technology.

• Real-Time
Monitoring:
IoT sensors,
connected
vehicles.

• Maintenance
Planning:
Real-time
data, predictive
analytics.

• Coordination and
Communication:
Unified digital
platform.

• Improved accuracy
in identifying
maintenance needs.

• Enhanced efficiency
and effectiveness.

• Reduced downtime
and inconvenience
for users.

3.7.1 Data types for Digital Twin integration

Creating a comprehensive digital twin requires integrating various types of data, ensuring a
holistic representation of road infrastructure. This integration involves combining geospatial,
structural, sensor, maintenance, traffic, and environmental data to provide a detailed and
dynamic model. Each data type contributes uniquely, enhancing the fidelity and utility of the
digital twin for applications like maintenance and real-time monitoring. The diverse data sets
are crucial for accurate analysis and decision-making, as shown in Table 5.

Table 5. Data types for Digital Twin integration.

Data Type Description

Geospatial Data This includes geographic information system (GIS) data, topographic maps, and
spatial coordinates defining the physical location and layout of road infrastructure.

Structural Data This includes detailed specifications of road components, such as pavement layers,
bridge dimensions, and materials used, providing a foundation for structural analysis.

Sensor Data This data is gathered from various sensors such as LiDAR, thermal cameras, GPS,
and GPR. These sensors provide spatio-temporal data on road conditions, traffic flow,
and environmental factors.

Maintenance
and Inspection
Data

This includes textual records from inspection reports, maintenance logs, and defect
databases that document the condition, repairs, and maintenance activities carried
out over time.

Traffic Data This includes traffic flow statistics, congestion patterns, and accident records, which
are crucial for modeling and simulating traffic scenarios.

Environmental
Data

This includes weather conditions, temperature, precipitation, and other environmental
factors that impact road conditions and maintenance needs.

Digital twins rely on real-time data from various sensors, which monitor aspects such
as structural health, traffic flow, and environmental conditions. This data is integrated using
APIs and stored in relational databases such as PostgreSQL. Ensuring data integrity and
providing seamless access to both historical and real-time data is critical for ongoing road
maintenance decisions.

Integrating GIS and BIM is essential for creating a cohesive digital twin environment.
GIS provides spatial context by mapping the physical location of assets, while BIM offers
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detailed 3D models of infrastructure components such as bridges and tunnels. The alignment
of geographic and geometric data ensures accurate asset management and analysis, crucial for
effective road maintenance.

PCD obtained from 3D scanning technologies like LiDAR represents the surface geometry
of assets. Technologies like WebGL, Three.js, or Potree enable the efficient rendering
and manipulation of large datasets in web browsers. This integration supports detailed
inspections and maintenance planning by providing precise 3D representations of road surfaces
and structures.

3.7.2 Data interoperability and standards

The interoperability between different data sources and formats is essential for effective digital
twin integration. Common data formats like JSON, XML, and CSV are used for data exchange.
Adhering to industry standards, such as IFC (Industry Foundation Classes) for BIM and OGC
(Open Geospatial Consortium) standards for GIS data, ensures compatibility and facilitates
seamless data integration.

APIs play a critical role in integrating various data sources into the digital twin platform.
They provide a standardized way to access and manipulate data, enabling the integration of
sensor data, GIS, BIM, and other information systems. The use of RESTful APIs ensures
that data can be accessed and updated in real-time, supporting dynamic interactions with the
digital twin.

3.7.3 Data security and management

Figure 2. Digital Twin architecture for roads.

It is essential to ensure the security and confidentiality of data in digital twin integration.
Strong security measures, such as encryption, access control, and secure communication
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protocols, should be implemented to allow only authorised users to access sensitive data, thus
maintaining the security and reliability of the digital twin platform.

The data management layer plays a crucial role in decision-making within the digital
twin architecture. It defines the types of data and the repositories for storing data from
inspection, monitoring, maintenance, and traffic sources. The identified data types include
Metadata, Static data, Dynamic data, Asset Management data, and Documents. The digital
twin processes different types of data from various sources with different natures and formats,
requiring optimised technologies for each type. The repositories for project data include:
1- Semantic Repository for metadata, 2- Time Series DB for dynamic data, 3- Relational
DB for static, dynamic, and asset management data 4- File System for static data in files, 5-
Document management for documents as shown in Figure 2 [128].

The Broker links sensor data and monitoring details, managing inputs from various sensors.
This integration ensures that real-time monitoring data is seamlessly incorporated into the
digital twin, facilitating decision-making for road maintenance and operations. Effective data
management practices are crucial for maintaining the accuracy and usability of the digital
twin. This includes regular data validation, cleaning, and updating processes to ensure that
data remains relevant and reliable. Implementing a structured data management framework
helps in organizing and storing data efficiently, facilitating easy access and analysis.

3.8. Advanced methodologies for fusion of different modalities

Different sensors typically bring complementary information about real-world sampling. For
example, RGB cameras provide visual texture information, while LiDAR brings explicit
3D geometric information. Therefore, the development of automated fusion techniques for
different sensors greatly assists in enhancing the automation level of road asset maintenance
and management. Most recent studies are data-driven methods. These methods mainly focus
on weighted fusion based on encoding different sensor information and learning weights to
allocate different weights to different information, thus aggregating different information [129].
Recently, the development of some new fusion technologies has brought new possibilities for
the maintenance and management of road assets, as follows.

Fusion technologies based on Transformer attention mechanisms [130] have rapidly
developed in the field of computer vision [131] and are expected to be widely used for
multimodal information fusion in road asset management [132, 133]. Transformers were
initially used in natural language processing, as the understanding of language relies on
the varying weights of different vocabulary and their positions in understanding the entire
sentence. The key of the Transformer is the self-attention mechanism, which can learn the
weights for each input feature, enabling the model to better understand the importance of
each feature based on contextual information. In the case of multi-sensor data fusion, the
self-attention mechanism can effectively align and weigh data from different sensors, thereby
extracting more meaningful features. This joint learning of attention to global information and
local multi-information input provides possibilities for the fusion of various information on
roads. Transformer technology is expected to combine scene context when fusing different
sensor information on roads, making judgments on road defects more accurate. Additionally,
traditional sequence models, such as Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) [134], require sequential processing of data, while the Transformer processes
input data in parallel. This characteristic allows it to efficiently handle large-scale data and
simultaneously fuse data from multiple sensors. At the same time, by stacking multiple layers
of Transformer encoders, the model can progressively extract and fuse deep features from
multi-sensor data. Transformer models can be stacked in multiple layers and trained on a large
scale [135]. Therefore, Transformer models hold promise for large-scale fusion of various
sensor information in the field of road traffic.

Technologies based on consistent 3D spatial modelling, such as Neural Radiance Field
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(NeRF) [136] and 3D Gaussians splatting [137], are rapidly developing in the field of
robotics [73, 138]. NeRF uses neural networks to implicitly represent 3D scenes. The network
maps 3D coordinates (x, y, z) and viewing directions to colour and density values. In other
words, NeRF does not store explicit geometric information (such as vertices and faces) but
encodes the appearance and structure of the scene into the weights of the neural network. In 3D
Gaussians splatting [137], 3D Gaussians are used to represent complex geometry distributions
in 3D space. Each Gaussian component represents a cluster of points with its own mean and
covariance. These components can capture features such as the density and colour of different
regions in 3D space. Since both of these encodings store information in 3D space, NeRF
and 3D Gaussians can store not only geometric structural features but also other features,
such as semantics, in 3D space when establishing a unified 3D spatial model [139, 140].
Their mathematical frameworks allow for flexible and scalable representations of complex
3D structures and features. This is very similar to the concept of digital twins in the civil
engineering field, which aims to achieve 3D modelling of physical assets while extracting and
detecting information such as defects in 3D space, thus achieving richer and more accurate
defect geometric modelling and defect type recognition.

Recently, the application of large models like chatGPT in multiple domains has sparked
a wave of interest in the application of generative models [141]. Generative models can
incorporate learned knowledge into neural networks and generate the information needed in
new scenarios based on conditional inputs. Thanks to the efficient and large-scale utilisation of
existing experience by generative models, their applications are very broad. Recently, GPT-4o
introduced image processing capabilities, enabling the model to handle and understand both
text and images, thereby expanding its range of applications. For example, when asked which
objects in an image are dynamic, ChatGPT can deduce the correct answer based on its existing
knowledge and output it in text form [142]. In addition, OpenAI began offering fine-tuning
capabilities starting with the GPT-3.5 and GPT-4 versions, allowing users to customize and
fine-tune the user’s own models. This feature is available through the OpenAI API, enabling
users to adjust existing pre-trained models based on specific tasks and data, making the
models more accurate and effective in certain application scenarios. Therefore, for problems
such as road defect detection and classification, it is possible to train an expert generative
model that, when fed road defect images, can detect and classify lane defects using large
generative models.

Different sensors reflect different physical properties; therefore, more detailed physical
modelling is a more interpretable way to integrate multimodal information. For example, in
computer graphics, material properties define how light interacts with a surface, geometric
properties affect the reflection of light, and texture properties provide surface detail and colour.
Through techniques like ray tracing and image rendering, these characteristics interact with
each other to collectively determine the visual appearance of the final rendered effect [143].
Since the real world is very complex and the physical mechanisms linking different modal
information are also complex and variable, deep learning is often used to assist in areas
where physical mechanisms are unclear. However, it is more robust and interpretable to
integrate physical mechanisms. Therefore, it is a trend to compile deep learning and physical
mechanisms together and achieve the fusion development of physical mechanism modelling
and learning-based modelling.
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Table 6. Advanced methodologies for fusion of different sensors.

Advanced
methodologies

Technology origin and
characteristics

Applications on fusion of
different sensors

Papers

Transformer
attention
mechanisms
[130]

Initially used in natural
language processing to
understand the entire
sentence.

This technology can fuse global
contextual information with
local multi-information input,
providing possibilities for the
fusion of various information on
roads.

[130–133]

Neural Radiance
Field (NeRF)
[136] and 3D
Gaussians
splatting [137]

Consistent 3D spatial
modelling, rapidly
developing in the field
of computer graphics,
computer vision, and
robotics.

This technology can store
semantics and other features in
3D space similar to the concept
of digital twins.

[73, 136–139]

Large generative
models like
chatGPT

Generative models can
incorporate learned
knowledge into neural
networks and generate
the information needed in
new scenarios based on
conditional inputs.

ChatGPT 4.0 allows each user to
fine-tune their own GPT with their
own data. Therefore, for problems
such as road defect detection and
classification, it is possible to train
an expert generative model that,
when fed road defect images, can
detect and classify lane defects
using large generative models.

[141, 142]

Detailed
physical
modelling
to connect the
relationship
between
different sensors

Since the real world is very
complex and the physical
mechanisms linking
different modal information
are also complex and
variable, deep learning
is often used to assist
in areas where physical
mechanisms are unclear,
achieving the fusion
development of physical
mechanism modelling and
learning-based modelling.

More detailed physical modelling
is a more interpretable way to
integrate multimodal information.
For example, in computer
graphics, through techniques
like ray tracing and image
rendering, geometric and material
information can be linked to
RGB images, thus connecting
the relationship between RGB
images and LiDAR 3D geometry.

[143]

3.9. More sensor data for fusion

Robots can use tactile sensing to identify objects [144]. Thus, tactile sensors hold promise for
achieving more accurate and detailed defect modelling through measurements of pressure and
deformation with the ground. Vehicles can be seen as robots. Tyre sensors make the vehicles
tactile. The tyres of the vehicles interact with the road surfaces directly. The roughness and
the friction of the road surface will have an influence on the tyres by the physical tyre-road
interaction. Optical tactile sensors by simply introducing light into the surface of a tyre could
make a possible to recognise the extent of road defects through the deformation of the tyre’s
contact with the ground. For example, the long-gauge fibre Bragg gratings have been used
for measuring the deformation of the tyre [145]. Mutli-fibre Bragg gratings were installed on
the inner face of the tyre to measure the longitudinal deformation of the tyre [146]. Recent
research has achieved the identification of material strain with high sensitivity by analysing
the backscattered light spectra in a deformed optical fibre [147]. Integrating sensors into the
tyres provides additional road surface monitoring abilities for the dynamic sensing of the road
surface conditions by the interaction of the tyre and the road surface [148] in a contact way.
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For example, the road friction coefficient can be measured by the tyre sensors in real time.
The advantage of tactile sensors lies in their ability to measure road surfaces through direct
contact, distinguishing them from non-contact sensors such as LiDAR, RGB cameras, and
other similar devices. This direct contact method provides unique road surface information
that non-contact sensors cannot obtain. Additionally, these tactile sensors can be seamlessly
integrated into existing vehicles with minimal modifications, such as by embedding them into
the tires. However, there are some drawbacks to consider. The cost of certain tactile sensors,
particularly fiber optic sensors, can be high. Furthermore, the maintenance and durability of
sensors embedded in tires present significant challenges that need to be addressed to ensure
long-term reliability and performance.

As vehicles travel on a road, different defects cause distinct sounds when the vehicle
contacts the defective road surface. Recent research [103] has outlined the effectiveness of
previous machine-learning methods in pavement monitoring. With the rapid development
of speech recognition analysis based on deep neural network [72], enhancing pavement
monitoring through sound is also a viable research direction. The advantages of these sensors
include their non-invasive nature and cost-effectiveness. However, environmental noise could
pose a significant challenge.

Vibration signals obtained with accelerometer modules in the vehicles have been used
for road surface monitoring. Recently, road surface profiles have been reconstructed with
vibration signals from the accelerometers on the vehicles and the quarter-car model [149]. Ten
electric vehicles were used for road profile monitoring on the highways and urban roads and
obtained good road profile matching with the results from laser profilometers. Because the
accelerometers were installed in the vehicles, this measurement can be implemented across all
weather conditions.

Smartphones integrated with accelerometer modules, GPS modules, gyroscopes and other
modules. Expensive road surface monitoring equipment restricts their accessibility. Road
surface monitoring with data from smartphones becomes an alternative road surface data
collection solution. The anomaly pavement conditions have been investigated by the data from
smartphones. For example, pothole detection with the accelerometer modules in smartphones
has been investigated in Latvia [150] and many other countries [151, 152]. The platforms can
be the vehicles [153] and the bicycles [154]. Road condition monitoring with smartphones is
used as a supplement to road surface monitoring.

Vibration-based sensors installed in vehicles can provide information on road surface
conditions across various weather conditions and are cost-effective. They are particularly
effective for monitoring road defects and assessing rough road profiles. However, their
sensitivity is typically insufficient for detecting small defects and capturing detailed
information about road surfaces.

Spectroscopy allows distinguishing the types of road surface conditions by measuring the
materials’ spectra. Dry, wet, and snowy road surfaces show different absorption and scattering
properties. By measuring the reflectance of the materials, the types of road surfaces and road
surface conditions can be obtained. After analysing the reflectance spectra from the road
surfaces, the dry, moist, wet, frosty, icy, and snowy road surfaces were classified [155].

Spectroscopy can not only show the materials’ types but also show other materials’
properties, for example, the thickness of the water on the road surfaces. The thicknesses of
the water on the asphalt road surfaces were determined with spectroscopy. A halogen light
was used for the illumination of the asphalt road surfaces with 1 mm, 2 mm, 3 mm and 4 mm
water depths [156]. By analysing the reflected light intensities, the depth of the waters were
determined. The wavelengths chosen for the water depth measurements were 1310 nm, 1490
nm and 1690 nm.

The friction coefficients of asphalt pavement can be obtained with spectroscopy. Carmon
and Ben-Dor [157] estimated the friction coefficients with the reflection of the light from
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400 nm to 2500 nm wavelength range and showed the potential of using the reflectance
spectroscopy to analyse the friction coefficients of the asphalt pavement quantitatively. A table
for more sensor data for fusion is shown in Table 7.

Spectroscopy-based methods are also non-destructive methods and have the advantages
to analyse material’s spectral properties with the spectroscopy. The spectroscopy equipment
generally has a high cost especially the photon detectors used for infrared wavelengths range
which are employed for distinguishing materials.

Table 7. More sensor data for fusion.

More sensor data Technology origin and
characteristics

Applications on fusion of
different sensors

Papers

Contact-surface data To reconstruct the
information of the surfaces,
for example, the profile of
the surfaces and friction of
the surfaces in a contact
approach.

The texture information, the
friction information, the profile
information of the road surfaces
supplement the data fusion

[145, 146, 148]

Vibration data Vibration signals can be
measured with the sound
sensors, the accelerometers,
the gyroscopes to measure
the pavement-relevant
information.

The additional pavement-relevant
data measured with vibration data
supplement road surface data
fusion, for example the road
profile detection and the anomaly
pavement condition detection.

[103, 149–154]

Spectral data Spectroscopy is used to
identify the materials’
properties by measuring
and analyzing the spectral
properties.

Additional data for example
the road surface status (dry,
moist, wet,icy, etc.), water
depths on the road surfaces, etc.
provide additional road surface
information for fusion.

[155–157]

3.10. Multimodal scanners

Road inspections employ scanners with various sensors, including LiDAR, cameras (color,
thermal, near-infrared, etc.), and GNSS-inertial systems [158, 159]. The quality of these
sensors typically correlates with their price, with higher-priced sensors generally offering
superior performance. Scanners used for road inspections are primarily classified into two
types: static and mobile. Static scanners remain stationary while scanning, while mobile
scanners move and record data simultaneously. Despite the growing interest in mobile scanners
within the inspection industry, static scanners remain the preferred choice for most companies
due to their ease of use and long-standing reliability. However, the emergence of advanced
mobile scanners, albeit costly, has the potential to reduce inspection times significantly.
While static scanning technology has demonstrated stability, mobile scanners are still gaining
widespread user acceptance.

One of the most compelling features of mobile mapping is its versatility. Unlike terrestrial
laser scanning, which is limited to specific locations, mobile mapping can be conducted
in diverse environments. By utilising advanced sensors and LiDAR technology mounted
on vehicles, drones, or individuals, it provides a comprehensive and seamless view of
the surroundings, even in road networks, complex terrains, and previously inaccessible
areas. They typically incorporate mechanical LiDAR for precise 3D point cloud generation,
and color cameras to enrich the point cloud with color information [160]. The choice of
camera type, quality, and resolution is tailored to the specific use cases of road inspection,
ensuring the highest level of performance. Additionally, GNSS-inertial systems serve as
crucial components of scanners, acting as reference points for fusing sensor data to create
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a comprehensive point cloud. However, high-accuracy GNSS-inertial systems remain
relatively expensive, contributing to the overall cost of advanced scanning technologies.
While commonly employed for road inspection, the conventional sensor suite predominantly
provides surface-level information about the pavement, often overlooking underlying issues
that cause many defects. In contrast, ground-penetrating radar (GPR) sensors integrated
with GNSS-based systems [161] offer a non-invasive means of collecting layer-by-layer
underground pavement data. Although GPR sensors have effectively revealed subsurface
conditions, their slower data collection process may necessitate road closures, limiting their
widespread use within road networks.

The market now features advanced mapping systems developed by leading hardware
vendors that can quickly produce high-quality colored point cloud data. These devices are
usually embedded with LiDAR sensors, cameras, and GNSS-initial systems. Notable examples
include the NavVis VLX [162], Leica Pegasus TRK [163], and Trimble MX9 [34]. These
multimodal scanners efficiently capture data on various aspects of road infrastructure, including
road surfaces, markings, pavement cracks [164], and detailed information on traffic signs,
encompassing their type, position, and placement [165]. The future of road surface condition
inspection lies in using autonomous vehicles equipped with mobile scanners [166].

4. Discussion

• As each modality can sense the environment differently, multimodal data fusion has
been catching attention increasingly in road asset reconstruction and maintenance.
LiDAR covers different surfaces and generates a regular point cloud, while RGB images
are rich in edge and corner features. Thermal images capture infrared characteristics
of the objects and provide detective features for vegetation, waterbodies and a range
of stresses on pavement. Thermal imaging has shown its effectiveness in detecting
non-visible damage on roads. As an additional data modality that provides the possibility
of subsurface information extraction, it can be used in predictive maintenance. However,
there are still problems in applying thermal imaging for such purposes in practice. Firstly,
using thermal imaging requires more expertise and staff training for operating the data
collection device. Secondly, unlike experiments in research labs, the lack of subsurface
ground truth in collected datasets for roads in operation limits the interpretation of
the data.
GPR senses unseen areas underground and delivers object responses as a consequence of
the disorder of waves, which can detect underground assets and anomalies. This modality
suffers from the same problem as thermal images, namely, lack of subsurface ground.
Text fusion catches attention in order to transform unorganized report data into structured
datasets and fuse them with other data modalities (e.g., visual data) for advanced
quantitative analysis. Despite the advancements related to text information extraction,
the fusion of text with other data sources in the road infrastructure domain remains an
unexplored area of research. Emerging audio-based pavement evaluation methods show
promise for surface analysis. However, still little research deals with the integration of
such data with other modalities.

• Implementation of multimodal data is not without its challenges. Data interoperability
and consistency remain significant hurdles, as different technologies and data sources
often use varied formats and standards. Developing a scalable data architecture that can
accommodate the diverse and growing volume of data is essential for the successful
deployment of digital twins in road maintenance. Furthermore, the reliance on advanced
machine learning algorithms and ontological frameworks for data fusion and analysis
necessitates robust computational infrastructure and expertise. Despite these challenges,
the benefits of leveraging multimodal data far outweigh the difficulties, as it leads to more
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informed decision-making, optimised resource allocation, and enhanced resilience of
road infrastructure. By addressing these challenges through standardised data protocols
and investing in advanced analytical capabilities, the potential of multimodal data
integration in transforming road maintenance practices can be fully realised.

• The integration of digital twins in road maintenance is transforming infrastructure
management by making use of comprehensive data structures. Digital twins combine
various types of data, such as geospatial, structural, sensor, maintenance, traffic,
and environmental data, to enable predictive maintenance and improve decision
support systems through advanced spatial and temporal analysis. To ensure seamless
data integration, digital twins must be interoperable with standards like IFC and
OGC and utilize APIs for real-time data access. Strong data security and effective
management practices are crucial for maintaining data integrity and reliability. Although
there are challenges in handling diverse data types, the advancement of techniques
shows promise in further enhancing digital twin for more efficient and effective
infrastructure management.

• In addition to traditional sensors such as LiDAR and RGB cameras used for road
monitoring, tactile sensors, fibre optic sensors, spectral sensors, and more sensors are
being used for road monitoring. These sensors provide more types of data that can be
used for data fusion in road maintenance. For example, tactile sensors can provide details
of road textures, fibre optic sensors provide information on the interaction between
tyres and road surfaces, and spectral sensors expand the spectral range of RGB to
distinguish the material properties on road surfaces. The application of these sensors
for road monitoring can become a supplement to the data fusion for road maintenance.
However, the challenges for these new sensors are that integrating these advanced
sensors with existing systems requires significant modifications not only need to update
the hardware, but also need to develop corresponding software for data processing.
Developing algorithms for data fusion from the new sensors to the data from Lidar, RGB
camera and other sensors a challenging task. The cost of the new sensors also needs to
be considered for real in-site monitoring tasks. Some of the sensors may demonstrate
feasibility in laboratory settings, transitioning to real-world applications introduces
further complexities such as durability, environmental noise resistance. Despite the
challenges, new sensor technologies show new potentials for the road maintenance by
providing additional complementary multimodal data.

• Currently, there have been numerous road maintenance methods based on multimodal
data. However, the wave of AI development continues to bring new methodologies
and research perspectives for multimodal data-based road maintenance from different
perspectives. These include the complementary integration of characteristics between
different sensors with transformer-based attention learning, interactive modelling of 3D
spatial features in 3D geometry learning, incorporation of expert knowledge based on
generative models, and modelling multimodal data fusion combining AI and physical
mechanisms for road maintenance, etc. These innovative research methodologies and AI
technologies will elevate the intelligence of road maintenance to a new level in the future.

• Despite the presence of strong players like Leica, Faro, and Trimble in the multi-model
scanner market, the current sensor modalities are primarily limited to laser and
colour images. While this is a solid foundation, numerous other sensor modalities
could significantly enhance road mapping capabilities. Both hardware and software
limitations of these scanners still require improvement. Fast laser scanners are
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still relatively expensive for many road maintenance contractors. Although current
systems can accurately register laser and image data, integrating other heterogeneous
sensor data remains challenging. Thermal imaging and GPR are highly sought
after for road inspection, yet collecting and registering these data types is more
complex. However, the rapid advancements in sensor technology, computing power,
and market demand indicate a promising future for multi-sensor road inspection scanners.

• This article explores how various data modalities can significantly enhance the
development of road digital twins beyond current practices. Integrating these diverse
modalities will require a concerted effort to unify and standardize the processes by which
we gather, analyze, and curate road data. This involves rethinking the entire pipeline
from the ground up—from the sensor combinations used in road inspection scanners
to the methods we employ to process and store this data for downstream applications.
Inspection scanners should be modular, allowing them to accommodate a wide range of
sensors, such as LiDAR, cameras, and others, tailored to specific needs. Furthermore,
advanced registration algorithms are needed to align data from different sensors, even
when captured at different times of day or under varying environmental conditions.
While AI models that normalize weather conditions in recorded data exist, they require
significant refinement to be deployment-ready. Additionally, technologies that lag in
speed and accuracy, such as GPR, must be prioritized in this multimodal approach.
Finally, textual data should be recorded in a machine-standardized format, enabling large
language models (LLMs) to digest and effectively provide insights into this data. By
addressing these challenges, we can move toward a more robust and comprehensive
approach to road maintenance, leveraging the full potential of multimodal data.

5. Conclusion

The integration of multimodal data in road maintenance opens new avenues for improving
the accuracy and efficiency of infrastructure management. One of the key advantages lies
in the ability to merge data from various sources to create a comprehensive and real-time
understanding of road conditions. In this paper, we addressed challenges in road maintenance
that multimodal data can tackle. We delved into multi-modal data applications and capabilities
for road maintenance including conventional modalities of LiDAR, RGB images, GPR, thermal
images and unconventional modalities of texts, audio, and outputs of unconventional sensors.
Fusion of different modalities and AI-based strategies for integration of this data in different
levels of data and models, besides commercialised solutions for multimodal processing, were
enumerated. Furthermore, each modality was analysed from the viewpoint of data types,
formats and capabilities in road maintenance.

Key attributes and parameters such as geometric dimensions and material properties
were investigated to fulfil the information requirements for data fusion, spatial and temporal
analyses, decision support systems, and resilience and adaptability. Data security, management,
interoperability and standards for road maintenance were other important issues that this paper
highlights. Integration of spatial and temporal, structural, traffic, and environmental data were
discussed to enable the predictive maintenance and improve decision support systems. Novel
fusion methods, new data types and modalities and multimodal scanners were other aspects of
interest which cope with multimodal data in the ream of road maintenance.

The fusion of data types enables a more nuanced analysis of road assets, allowing for
detailed assessments that were previously unattainable with single-mode data. Additionally,
the integration of real-time traffic data and environmental conditions facilitates more dynamic
and responsive maintenance strategies, ensuring that road networks remain operational under
varying conditions.

What’s more, the review of the research demonstrates a low coverage of specific road assets
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such as drainage systems and lampposts. Moreover, modalities of GPR and thermal images,
along with text and audio, have rarely been integrated into road assets management. Our
research explores the fact that multimodal data fusion needs attention to reach a comprehensive
and automatic integration with digital twins and bring its values to it in the context of road
maintenance. Advancements in multimodal data capture and process enable road construction,
monitoring and maintenance more intelligent and near real-time.
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