
Benchmark on real-time long-range aircraft
detection for safe RPAS operations

Vı́ctor Alarcón1, Pablo Santana1, Francisco Ramos1, Francisco Javier
Pérez-Grau1, Antidio Viguria1, and Ańıbal Ollero2

1 Advanced Center for Aerospace Technologies (CATEC), Seville, Spain,
vmalarcon@catec.aero,

2 Robotics, Vision and Control Group (GRVC), Universidad de Sevilla, Seville, Spain

Abstract. The growing market in Remotely Piloted Aircraft Systems
(RPAS) and the need for cost-effective ”Detect and Avoid (DAA)” sys-
tems are critical issues up to date towards enabling safe beyond visual
line of sight (BVLOS) operations. In hopes of promoting earlier threat
detection on DAA systems, we benchmark several object detection algo-
rithms on multiple graphical processing units for the concrete DAA use
case. Two state-of-the-art ”real-time object detection” and ”object de-
tection” model sets are trained using our CENTINELA dataset, and their
performances are compared for a wide range of configurations. Results
demonstrate that one-stage architecture YOLO variants outperform ViT
on all tested hardware in terms of mean average precision and inference
speed despite their architecture complexity gap. Additional resources
are available to the reader at https://github.com/fada-catec/detection-
for-safe-rpas-operation.

Keywords: real-time object detection; convolutional neural networks;
visual transformers; unmanned aerial systems; detect and avoid

1 Introduction

1.1 Motivation

Over the last years, the Remotely Piloted Aircraft Systems (RPAS) business has
grown significantly. The European RPAS market witnessed a growth of 16.6%
according to the compound annual growth rate from 2017 to 2021, surpassing
USD 3 billion in 2020 [1]. In addition, the RPAS market is projected to expand
rapidly at 21.9% through 2032 in the European region [2].

The changes in regulations made by the European Union Aviation Safety
Agency (EASA) support the deployment of RPAS in various sectors, such as
infrastructure, agriculture, transport, entertainment, and security [3]. Neverthe-
less, one of the critical points to reaching the full potential of the RPAS market
is the transition from operations within Visual Line Of Sight (VLOS) to Beyond
VLOS (BVLOS), which offer a higher added value. The Single European Sky
ATM Research (SESAR) Joint Undertaking estimates that approximately 50%



2 Vı́ctor Alarcón et al.

of the professional market will focus on BVLOS operations in rural environ-
ments for applications such as linear infrastructure inspection and monitoring,
precision agriculture, and surveillance [4]. However, factors such as strict regu-
lations, security and safety concerns, and lack of trained pilots, are anticipated
to hamper the market growth during the forecast period.

Thus, the need for a Detect And Avoid (DAA) system for RPAS is intro-
duced, which refers to integrating sensors to recognize the environment and
navigate safely regarding unforeseen encounters and potential collisions. The
problem is divided into two tasks: detecting objects close to the aerial vehicle,
and managing the maneuver to avoid a collision. DAA systems’ architecture can
vary, and multiple types of sensors, including acoustic, visual or radars, can be
used [5]. When performing BVLOS flights, the main roadblock is the absence of
cost-effective systems approved by the aeronautical authorities. This is a sub-
ject of research activities, and different approaches have been tested up to date,
including complex sensors and powerful but heavy computer systems. The dif-
ference in terms of cost-effective systems between visual sensors and others is a
compelling argument for focusing the work on object detection on images. Given
the application, an RGB camera providing high-resolution images (i.e. around 20
megapixels) is needed to acquire images with the maximum availability in terms
of field of view and number of pixels for object detection, which tends to be a
challenge for objects at distances larger than 1 km. In terms of computational
needs, this application demands a computer with enough graphical processing
capacity and advanced algorithms to perform real-time object detection.

The key enabler of this work is the lack of references in the state of the art
for algorithms and their performances to be embedded on small, cost-effective,
portable and energy-efficient single-board computers (SBC). The focus is laid on
effectiveness in terms of speed and accuracy for the early detection of manned
aircraft using RGB cameras and embedded processes over single board comput-
ers. Results allow going deeper into the design of DAA systems to detect distant
aircraft in real-time, hence fostering BVLOS operations for RPAS.

1.2 Related work

Compared to traditional Computer Vision (CV) techniques, Deep Learning (DL)
achieves greater accuracies in tasks such as image classification, semantic seg-
mentation and object detection. Since DL approaches are trained rather than
deterministically programmed, applications using this approach can exploit the
tremendous amount of data available in today’s systems, and often require less
expert analysis and hand-tuning. DL also provides superior flexibility because
the models can be re-trained using custom datasets for other use cases, contrary
to CV algorithms, which tend to be more domain-specific [6]. That is the main
reason to go deeper into DL than classic CV approaches.

Real-time small object detection using high-resolution RGB images and DL
algorithms is an open issue in DAA systems, as well as in other applications
such as autonomous driving [7] or video surveillance [8]. In terms of accuracy,
recent research on object detection has already achieved significant progress,



Object Detection Benchmark 3

but it is still challenging when the target appears as a small percentage of the
entire image. It is common to find works that face the problem of detecting
objects using Convolutional Neural Networks (CNN), such as Faster R-CNN
[9] or Single Shot Detector [10]; however, input images are downsampled using
pooling layers, hence targets could easily be filtered out in the final feature map.
Other approaches try to solve this issue by using innovative architectures based
on Transformers with Attention [11] [12] or Feature Pyramid Networks (FPN)
[13]. Although these methods address this problem and improve state-of-the-
art performance in small object detection, their time complexity is higher for
accurate real-time detection.

It is necessary to prepare detectors that address our specific scenario to ensure
a reasonable accuracy in our application. An extensive aerial object detection
dataset with objects at various scales is presented at [14]. Still, its great amount
of largely-sized items deters the detection of smaller ones, making it impossible
to evaluate the performance of detectors on this issue. Other aerospace-related
works aim to compare different algorithms in real-time small object detection,
as presented in [15] and [16], but both are focused on a different scenario.

The absence of an extensive collection of images with aircraft flying far from
the visual sensor makes it difficult to focus the research activities, as there are
no results from previous works. As a scientific novelty, this work compares su-
pervised neural network architectures for object detection by training models
using a proprietary dataset, where targets are small aircraft flying at least 6000
feet away. In addition, multiple computing boards with different processing ca-
pabilities are used to test the performance of the trained models.

The rest of the paper is structured as follows. In section 2, the selected DL
object detection algorithms are presented. Section 3 describes the software tools,
the hardware platforms, the dataset and the performance metrics used in the
experiments. In section 4, the results of each model evaluation are presented,
and the implications of the results are discussed. Finally, section 5 presents the
study’s main conclusions and future lines of work.

2 Object Detection Algorithms

In order to solve the DAA problem using DL algorithms, one of the critical
aspects is choosing a network architecture that optimally balances detection ac-
curacy and computational cost. While the nature of the DAA problem favors
lightweight DL models to approach real-time performance, detecting small-sized
aeroplanes at lengthy distances demands high-resolution imagery in which tar-
gets might cover only a few pixels.

Taking into account [17], some architectures have been selected regarding two
state-of-the-art benchmarks called ”Object Detection” and ”Real-Time Object
Detection”. In the first one, a general ranking prioritizing inference accuracy is
presented, while on the other one, a fast time inference while maintaining a base
level of accuracy is given. Despite the absence of inference times in the ”Object
Detection” benchmark, our work is set to provide enough inference speed due



4 Vı́ctor Alarcón et al.

to fast in-time hardware evolution and cost decrease of processing components.
These rankings have been tested and validated using the MS COCO dataset [18],
one of the most widespread free dataset used for new DL strategies.

The selected architectures are based on the You Only Look Once (YOLO)
family, initially defined in [19], and the Visual Transformers (ViT) neural net-
work types [20]. YOLOv architectures are considered the fastest DL object de-
tection methods due to their architecture which prioritizes inference speed by
producing the output without intermediary region proposals. ViT architectures
are focused on a different paradigm since they avoid recurrence and rely entirely
on an attention mechanism to establish global dependencies between input and
output, without using sequence-aligned convolutions, prioritizing accuracy over
inference speed. For each type of architecture, a simple and a more complex
neural network have been selected, with the idea of testing them on multiple
board computers with different Graphics Processing Units (GPU).

In terms of CNNs, YOLOv4 [21] variants are considered the fastest real-
time neural network architectures for object detection with a base level of accu-
racy. YOLOv5 [22] architecture builds on YOLOv4 including some improvements
to run better off-the-shelf; though no research paper has been made available,
its promising experimental results have motivated its inclusion in our study.
YOLOv4-tiny and YOLOv5N are the light versions considered, while YOLOV4-
P6 and YOLOv5S are the implementations for more complex computers.

Concerning ViT architectures, DETR [23], Swin-transformer [24] and Dy-
Head [25] have high scores in the benchmark. DAB-DETR and Swin-s are se-
lected as light architectures from DETR and Swin-Transformers, respectively,
and deformable DETR, Swin-t and DyHead as the complex architectures. In
particular, the proposed ViT arquitectures are the following: a DAB-DETR, its
multiscale version DAB-Deformable and the Dynamic Head (DyHead) architec-
tures using the same ResNet50 backbone. In addition, three configurations of
the Swin-transformer architecture including the two-stage detector Mask RCNN
combined with Swin-T and Swin-S backbones, and a combination of the one-
stage detector RetinaNet with Swin-T backbone.

The nature of the proposed DAA system demands a trade-off between accu-
racy and inference speed, so we consider it essential to compare both available
options in the state-of-the-art, which there is no doubt about their relevance to
the scientific community regarding the object detection challenge.

3 Experimental setup

This section discusses technical details towards software and hardware selection,
dataset construction and model configuration. Related material is available at
https://github.com/fada-catec/detection-for-safe-rpas-operation.

3.1 Hardware Platforms

Our experiments have been carried out on different hardware platforms to com-
pare the performance of our models in a varied range of specifications. Since



Object Detection Benchmark 5

the detection algorithms should optimally be run in real-time, it is interesting
to obtain performance metrics using various devices, as such processing can be
performed either in situ or remotely. In the former case, light single board com-
puters with limited GPUs are deployed in the operating area. In the latter, more
powerful computer equipment has been considered taking into account the re-
cent advances in cloud computing and high-bandwidth communications with low
latencies, enabling high-end servers for real-time data processing.

Regarding light computing, we target an array of NVIDIA SBCs, which pro-
vide great computing capabilities on compact and energy-efficient equipment
[26]. These are delivered through different boards with a broad performance
range, from which we select the increasingly powerful set consisting of the Jet-
son Nano, Jetson TX2 and Xavier NX.

In the middle range, we include a laptop with an NVIDIA RTX A2000 GPU.
While such card is neither suitable to be deployed in situ, nor powerful enough
to be considered a cloud computing solution, its study becomes relevant towards
early development stages of DL projects, which usually take place on average
machines with mid-end GPUs.

Finally, we assess two high-end GPU machines geared with an NVIDIA
GeForce RTX 2080Ti and an RTX 3080 GPU, which stand for remote cloud
computers. Though commercial servers that process information using DL algo-
rithms typically provide higher capabilities, these still possess a decent amount
of power and represent a common self-hosted solution for research teams to have
as a shared resource. These two machines will also be used to train our models.

3.2 Software Tools

Regarding software, it is useful to select a common DL framework to execute
training and model evaluations. PyTorch [27] has been selected, since it covers
all our target models, which are run through intermediary tools that use it as a
backend.

One-stage CNN architectures have been supported by three different open-
source repositories: ScaledYOLOv4 [28] for YOLOv4-P6, PyTorch YOLOv4 [29]
for YOLOv4-tiny, and Yolov5 [22] from Ultralytics for YOLOv5N and YOLOv5S.
On the other hand, the open-source toolbox MMDetection [30] has been used to
work with the ViT-NN models: DAB-DETR, DAB-Deformable, DyHead, Mask
RCNN Swin-T, Mask RCNN Swin-S and RetinaNet Swin-T.

To test our models within a common set of performance metrics, these are
evaluated with the official MS COCO validation API [31], by first using the
aforementioned tools to perform inference on a test split of the data, and then
using MS COCO’s to compare those against its ground-truth labels. Besides
overall precision results, MS COCO also computes metrics by dividing the target
data in three size groups: small for an area of 32× 32px2, large for an area over
96 × 96px2, and medium elsewhere. Such size segregation refers to the original
images, without regard to the resizing they undergo at inference time.



6 Vı́ctor Alarcón et al.

3.3 Datasets

In order to benchmark the models defined in section 2, we have crafted a propri-
etary dataset composed of images of small aircraft taken at different field tests,
namely the CENTINELA dataset. Such field tests took place in five different
airfields in which a few distinctive landscapes were captured during flight tests.
Natively, these images have a resolution of 5472×3648 px2. They were manually
labelled using [32], being 125×80 px2 the average size of aircraft labels.

In Fig. 1, the left column shows random samples of these images, and each
row belongs to a different scenario. The main pitfall is the similarity among
samples within the same field test, as each location contains only a different
set of landscapes over which the aircraft appear. Since many images are visu-
ally similar (except for the small aircraft within the image itself), performing a
train-validation-test split by randomly shuffling all our images would lead to all
three splits being very similar. Hence, this would yield overly-optimistic yet un-
realistic detection performance metrics. On the other hand, splitting the images
by field test makes our training set very monotonous, so that trained models can
generalize to neither test nor validation sets.

To overcome these two issues, we featurized the images of each field test using
a pre-trained low-resolution VGG-16 network, and then used those features to
cluster the images using the K-means algorithm. We then shuffled the clusters
of all field tests to achieve a 70:15:15 split for train, validation and test subsets
respectively. An overview of this splitting strategy can be seen in the rest of
Fig. 1, which shows a random preview of samples from different clusters and the
three final splits. According to the MS COCO standard sizes, our test split is
composed of 189 small, 881 medium and 533 large instances.

3.4 Model configuration

Our detectors must process image sizes of 20 megapixels in real-time. Large im-
age sizes would not only hinder inference speed when deployed, but also increase
training costs. Besides being time-wise expensive, training on very big images
can also limit the choice of batch size.

Since GPUs have a limited amount of memory, increasing the image size
would restrict to training on smaller batches. Small batch sizes detriments train-
ing efficiency, as the gradient is not so well averaged across samples. Besides
slower processing, this would lead to longer training times, since loss conver-
gence is harder to reach. On the other hand, a big batch size performs less
gradient updates per epoch, requiring larger learning rates that may lead to in-
stabilities. The latter is, however, not usually an issue within object detection,
where larger batch sizes are advisable [22].

Real-time models were trained on a square resolution of 1280px. Such image
size was deemed enough for the labelled aircraft not to become unrecognisable
pixel blobs, while allowing the batch size to be higher than one picture in our
training computer for our heaviest target model. After this resize, average label



Object Detection Benchmark 7
Scenarios Clusters Splits

Train

Test

Valid

Aeroh.

Atlas

Beas

Ilipa

Orán

Fig. 1. CENTINELA dataset construction overview. Images gathered from different
scenarios (left) were clustered by similarity (middle). Those clusters were finally shuffled
to assemble three landscape-rich yet heterogeneous splits (right).

size approached 30×30px2. Following best practices [22], the batch size was set
as big as possible after the image size was established.

On the other hand, non-real-time models inherit their input resolution from
the FPN standard [33], which comes by default in [34]. Because our images
are taller than wide, they get resized to a height of 800px while keeping their
3 : 2 aspect ratio, thus leaving a network input image resolution of 1200×800px2.
Such resolution is on par with the one used for our real-time models, still allowing
small aircraft to be identifiable with an average label size of 27×17px2. Again,
the batch size was set at the highest value allowed by the training hardware.

Table 1 holds a summary of the training setup for all target models.

4 Results and discussion

4.1 Performance Metrics

To obtain an evaluation of the accuracy and the inference speed, we must se-
lect the metrics on which to base our conclusions. Object detection challenges
typically use their own metrics to evaluate the proposed task. Researchers who
want to evaluate their work using different datasets need to either implement
their version of the metrics or adhere to an existing standard.

When measuring accuracy, [17] proposes the use of MS COCO as the most
popular dataset to establish their ranking, and then evaluates Mean Average
Precision (mAP) metrics, a metric calculated with the help of several other
metrics such as Intersect over Union (IoU), confusion matrix, precision and recall.



8 Vı́ctor Alarcón et al.

Model Input-size Batch-size Machine

yolov4-p6 1280×1280 2 RTX 2080Ti
yolov5l 1280×1280 4 RTX 2080Ti
yolov4-tiny 1280×1280 24 RTX 2080Ti
yolov5n 1280×1280 28 RTX 2080Ti

swin-t 1200×800 2 RTX 3080
swin-s 1200×800 2 RTX 3080
dyhead 1200×800 3 RTX 3080
retina-swin 1200×800 3 RTX 3080
detr 1200×800 4 RTX 3080
defor 1200×800 1 RTX 3080

Table 1. Input image size (px2), batch size and training GPU for all target models.

Despite using a proprietary dataset, our work is based on the assumption of
results published by this source, so we have considered using the same metrics.

The case of measuring inference speed is different. The most common scenario
is to provide the results in completely processed frames per second (FPS), and
the inference time per frame in milliseconds (ms). Therefore, FPS and MS are
the metrics selected in our work.

4.2 Inference speed comparison

Table 2 shows the results of testing each model on each hardware platform, where
the higher speed is highlighted in bold. The results prove that one-stage detectors
perform better than two-stage detectors due to their architecture type. YOLOv
models are more appropriate for real-time tasks since their inference time is
generally lower than those using ViT. Specifically, YOLOv tiny models are faster
than others due to their lightweight architecture. By contrast, large YOLOv
architectures and ViT models perform poorly on single board computers, or
cannot be used due to a lack of memory (e.g. Jetson Nano). Still, executing
real-time operations for the studied use case is feasible using medium and high-
processing graphic boards.

4.3 Inference accuracy comparison

The results for all models are shown in Table 3, and the highest values are
highlighted in bold. Real-time networks lead the accuracy scores, with the most
accurate model being YOLOv4-P6. If we focus on comparing the real-time ar-
chitectures, some behaviours worthy of study are found:

– The size accuracies indicate that smaller objects are harder to detect, and
that YOLOv4 models have more difficulty dealing with them versus YOLOv5
variants. An extreme example is YOLOv4-tiny, which gets 0% of mAP on



Object Detection Benchmark 9

Name
Height
px

Nano
ms/fps

TX2
ms/fps

Xavier
ms/fps

A2000
ms/fps

2080Ti
ms/fps

3080
ms/fps

yolov4-P6 1280 − 1600/0.63 670/1.5 87/12 43/23 33/30
yolov5L 1280 − 740/1.4 310/3.2 40/25 23/43 18/56
yolov4-tiny 1280 560/1.8 140/7.1 64/16 8.8/110 6.0/167 4.5/220
yolov5n 1280 470/2.1 90/11 60/17 7.8/130 7.3/140 6.9/150

dyhead 800 − 1700/0.59 1600/0.63 170/5.9 82/12 63/16
swin-s 800 − 2700/0.37 1300/0.77 120/8.3 62/16 46/22
swin-t 800 − 1800/0.56 1400/0.71 120/8.3 68/15 47/21
retina-swin 800 − 1600/0.63 1300/0.77 130/7.7 66/15 45/22
defor 800 − 1800/0.56 1500/0.67 150/6.7 77/13 51/20
detr 800 − 710/1.4 640/1.6 74/14 38/26 28/36

Table 2. Inference speed per image of all different models on the target hardware.

small objects. On the contrary, the results reflect that YOLOv4 architectures
perform faster on large objects.

– Comparing YOLOv5 variants, YOLOv5-L has slightly lower mAP and AP50
scores than YOLOv5-N, which is interesting since the former has a more
complex architecture, which should allow it to learn more features and sig-
nificantly outperform the latter. This result can be explained by a slight
overfitting, to which larger networks are more vulnerable, although YOLOv4
models do not share such pattern. In any case, YOLOv5-L is more accurate
for higher IoU thresholds.

– Across different box scales, YOLOv5-N seems to perform better with large
objects, while YOLOv5-L shows better mAPs on small and medium objects.
The best mAP is for the medium size group, the most abundant in our test
set.

– Comparing YOLOV4 on large objects, although YOLOv4-P6 is still ahead,
the 3 points difference in mAP shows that simpler architectures like YOLOv4-
tiny are close in performance to more complex architectures.

– The fact that the accuracies of YOLOv5-N are so close to those of YOLOv4-
P6 suggests that small models can keep up with large ones when the number
of classes is low.

– YOLOv5-L and YOLOv5-N perform better than YOLOv4 variants on smaller
objects, keeping a similar mAP, thus generating a case worth studying.

5 Conclusions and future work

This paper compares the top-ranked neural network architectures according to
[17] for detecting small aircraft in high-resolution images in real-time. We present
the outcomes of typical real-time-oriented architectures (YOLOv family) and
good-accuracy performance-oriented architectures (ViT). The keys of the result



10 Vı́ctor Alarcón et al.

Name
Height
px

mAP
all

AP50
all

AP75
all

mAP
small

mAP
medium

mAP
large

yolov4-P6 1280 30.2 76.9 15.1 18.5 30.3 35.4
yolov5L 1280 26.2 68.3 14.7 23.7 28.4 27.3
yolov4-tiny 1280 22.2 57.4 13.7 0.00 19.4 32.4
yolov5n 1280 26.7 70.2 14.2 22.7 26.4 30.3

dyhead 800 21.7 55.0 15.7 13.9 21.1 22.6
swin-s 800 32.4 60.3 32.3 0.00 33.0 39.8
swin-t 800 23.3 50.7 19.1 0.00 24.4 28.1
retina-swin 800 23.1 58.6 14.0 13.5 23.7 28.5
defor 800 14.2 42.5 7.1 8.4 11.9 20.5
detr 800 16.3 63.1 3.4 9.7 14.3 23.3

Table 3. Average precision metrics (%) for all models on the dataset. Respectively:
image height, mean average precision, average precision at IoU 50%, average precision
at IoU 75%, plus mean average precisions for small, medium and large bounding boxes.

are based on two standard performance metrics, mAP for inference accuracy
and time metrics for inference speed. The results clearly show that real-time
algorithms perform better than ViT concerning the use-case related to this work,
represented by our proprietary dataset.

Proposing the use of ViT architectures was motivated by the good results
of other scientific researchers according to their practical use cases. However,
the poor results presented compared to YOLOv architectures will be subject of
future work, as some possibilities are open to study. Increasing the quality and
extension of the dataset, updating the input data configuration of architectures
in the training phase, or combining backbones with more precise features extrac-
tors are good examples of the open paths to continue this work. These proposed
items are also valid for real-time object detection networks, as some discussed
behaviours are not entirely comprised.

Finally, as DL techniques are subject to continuous update, the emergence
of new architectures has to be considered to be included in the benchmark, as
they could improve the results of real-time object detection metrics in terms
of accuracy and inference speed, offering better performances in the use case
proposed in this work.

Acknowledgements. This work has been partially supported by the OMI-
CRON project, funded by the EU H2020 programme under grant agreement
955269, and CEL.IA, a Cervera Network for applied artificial intelligence, funded
by the Spanish government through CDTI (CER-20211022).

References

[1] Graphical Research. Europe Commercial Drone Market Forecast 2027. [On-
line; accessed 30 Aug. 2022]. url: https://www.graphicalresearch.com/



Object Detection Benchmark 11

industry - insights / 1016 / europe - commercial - drone - unmanned - aerial -
vehicle-UAV-market.

[2] Fact.MR. Europe Drone Market Outlook (2022-2032). [Online; accessed 30
Aug. 2022]. url: https://www.factmr.com/report/europe-drones-market.

[3] EASA. Civil drones (unmanned aircraft). [Online; accessed 30 Aug. 2022].
url: https://www.easa.europa.eu/domains/civil-drones.

[4] Single European Sky ATM Research. European Drones Outlook Study. [On-
line; accessed 30 Aug. 2022]. url: https://www.sesarju.eu/sites/default/
files/documents/reports/European Drones Outlook Study 2016.pdf.

[5] Jorge Mariscal-Harana et al. “Audio-based aircraft detection system for
safe rpas bvlos operations”. In: Electronics 9.12 (2020), p. 2076.

[6] Kohei Arai and Supriya Kapoor. “Advances in computer vision”. In: Con-
ference proceedings CVC. Springer. 2019, p. 104.

[7] Yingfeng Cai et al. “YOLOv4-5D: An Effective and Efficient Object De-
tector for Autonomous Driving”. In: IEEE Trans. Instrum. Meas. 70 (),
pp. 1–13.

[8] Sudan Jha et al. “Real time object detection and trackingsystem for video
surveillance system”. In: Multimed. Tools Appl. 80.3 (), pp. 3981–3996.

[9] Shaoqing Ren et al. “Faster R-CNN: Towards real-time object detection
with region proposal networks”. In: Advances in neural information pro-
cessing systems 28 (2015).

[10] Wei Liu et al. “SSD: Single shot multibox detector”. In: European confer-
ence on computer vision. Springer. 2016, pp. 21–37.

[11] Xingkui Zhu et al. “TPH-YOLOv5: Improved YOLOv5 Based on Trans-
former Prediction Head for Object Detection on Drone-captured Scenar-
ios”. In: 2021 IEEE/CVF International Conference on Computer Vision
Workshops (ICCVW) (2021), pp. 2778–2788.

[12] Jing Lian et al. “Small object detection in traffic scenes based on attention
feature fusion”. In: Sensors 21.9 (2021), p. 3031.

[13] Ziming Liu et al. “HRDNet: high-resolution detection network for small
objects”. In: 2021 IEEE International Conference on Multimedia and Expo
(ICME). IEEE. 2021, pp. 1–6.

[14] Gui-Song Xia et al. “DOTA: A large-scale dataset for object detection in
aerial images”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 3974–3983.

[15] Xian Sun et al. “FAIR1M: A benchmark dataset for fine-grained object
recognition in high-resolution remote sensing imagery”. In: ISPRS Journal
of Photogrammetry and Remote Sensing 184 (2022), pp. 116–130.

[16] Yi Wang et al. “Remote sensing image super-resolution and object detec-
tion: Benchmark and state of the art”. In: Expert Systems with Applications
(2022), p. 116793.

[17] Papers with Code. A free and open resource with Machine Learning papers,
code, datasets, methods and evaluation tables. [Online; accessed 30 Aug.
2022]. url: https://paperswithcode.com.



12 Vı́ctor Alarcón et al.

[18] Tsung-Yi Lin et al. “Microsoft COCO: Common objects in context”. In:
European conference on computer vision. Springer. 2014, pp. 740–755.

[19] Joseph Redmon et al. “You only look once: Unified, real-time object de-
tection”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 779–788.

[20] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transform-
ers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929
(2020).

[21] Chien-YaoWang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. “Scaled-
yolov4: Scaling cross stage partial network”. In: Proceedings of the IEEE/cvf
conference on computer vision and pattern recognition. 2021, pp. 13029–
13038.

[22] Ultralytics. YOLOv5. [Online; accessed 30 Aug. 2022]. url: https : / /
github.com/ultralytics/yolov5.

[23] Nicolas Carion et al. “End-to-end object detection with transformers”. In:
European conference on computer vision. Springer. 2020, pp. 213–229.

[24] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using
shifted windows”. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. 2021, pp. 10012–10022.

[25] Xiyang Dai et al. “Dynamic head: Unifying object detection heads with at-
tentions”. In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2021, pp. 7373–7382.

[26] NVIDIA. Sistemas integrados NVIDIA para las máquinas autónomas de la
próxima generación. [Online; accessed 30 Aug. 2022]. url: https://www.
nvidia.com/es-es/autonomous-machines/embedded-systems.

[27] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems
32 (2019).

[28] Wong Kin-Yiu. ScaledYOLOv4. [Online; accessed 30 Aug. 2022]. url:
https://github.com/WongKinYiu/ScaledYOLOv4.

[29] Wong Kin-Yiu. PyTorch YOLOv4. [Online; accessed 30 Aug. 2022]. url:
https://github.com/WongKinYiu/PyTorch YOLOv4.

[30] Kai Chen et al. “MMDetection: Open mmlab detection toolbox and bench-
mark”. In: arXiv preprint arXiv:1906.07155 (2019).

[31] cocodataset. COCO API. [Online; accessed 30 Aug. 2022]. url: https :
//github.com/cocodataset/cocoapi.

[32] Roblox. ImageLabel. [Online; accessed 30 Aug. 2022]. url: https://developer.
roblox.com/en-us/api-reference/class/ImageLabel.

[33] Tsung-Yi Lin et al. “Feature Pyramid Networks for Object Detection”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). July 2017.

[34] OpenMMLab. mmdetection. [Online; accessed 30 Aug. 2022]. url: https:
//github.com/open-mmlab/mmdetection.


